Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting fetal chromosomal defects without risk

07.05.2014

Noninvasive sequencing is faster, cheaper and safer for mother and fetus, say researchers

Chromosomal abnormalities that result in birth defects and genetic disorders like Down syndrome remain a significant health burden in the United States and throughout the world, with some current prenatal screening procedures invasive and a potential risk to mother and unborn child.

In a paper published online this week in the Early Edition of PNAS, a team of scientists at the University of California, San Diego School of Medicine and in China describe a new benchtop semiconductor sequencing procedure and newly developed bioinformatics software tools that are fast, accurate, portable, less expensive and can be completed without harm to mother or fetus.

"We believe this approach could become the standard of care for screening of prenatal chromosomal abnormalities," said Kang Zhang, MD, PhD, professor of ophthalmology, founding director of the Institute for Genomic Medicine at UC San Diego and a staff physician at the San Diego VA Healthcare System.

The incidence of chromosomal abnormalities – in numbers or structure – is one in 160 live births in the United States, higher in other countries. In China, for example, the rate is one in 60 live births. The effects of these abnormalities, known as aneuploidies, can be severe, from developmental delays and neurological disorders to infertility and death. The incidence rate rises with maternal age, most notably after age 35.

Current diagnoses of fetal aneuploidies often rely upon invasive tests that sample amniotic fluid or placental tissues for fetal DNA that can then be analyzed using a variety of complex and expensive methods, including full karyotyping in which the entire set of chromosomes is viewed microscopically. While highly reliable, these invasive tests may cause infections in the pregnant woman and pose as much as a 1 percent risk of miscarriage and fetal loss. Results are not available for one to two weeks, extending anxiety for families waiting for information.

The new method relies upon massively parallel sequencing of cell-free fetal DNA using a benchtop semiconductor sequencing platform (SSP) called an Ion Torrent sequencer developed by Life Technologies. Cell-free fetal DNA is genetic material from the fetus that circulates naturally and freely in the mother's bloodstream. It can be obtained through an ordinary blood draw, with SSP analysis achieved in less than four days.

To assess the SSP method, researchers tested 2,275 pregnant women. More than 500 participated in a retrospective analysis, undergoing full karyotyping to establish known chromosomal abnormalities followed by SSP testing. The remainder participated in a prospective study without prior karyotyping, and SSP testing results were then compared to karyotyping results. The sequencing and automated bioinformatics analyses were performed at iGenomics in Guangzhou, China.

"We used the retrospective study to establish the method and the prospective study to validate it," said Zhang.

In the retrospective study, the researchers found that SSP detected multiple types of chromosomal abnormality with virtually 100 percent sensitivity and specificity compared to full karyotyping.

"To our knowledge, this is the first large-scale clinical study to systematically identify chromosomal aneuploidies based on cell-free fetal DNA using SSP," said Zhang. "It provides an effective strategy for large-scale, noninvasive screenings in a clinical setting. It can be done in hospitals and outpatient clinics, more quickly and cheaply."

###

Co-authors are Can Liao, Fang Fu, Ru Li, Yong-ling Zhang, Yan-mei Ou, Jian Li and Dong-zhi Li, Guangzhou Medical University, China; Ai-hua Yi, Jie-xia Yang, Jing Wu, Ming-qin Mai and Xiao-zhuang Zhang, Guangdong Women and Children Hospital, China; Chun-fang Peng, Yang-yi Chen, Dong-hong Luo and Hai-liang Liu, iGenomics Co., Guangzhou, China; Rui Hou, Guangzhou Kang Rui Biological Pharmaceutical Technology Co, Guangzhou, China; Frances Wu, UCSD Institute for Genomic Medicine and UCSD Department of Ophthalmology; and Hongrong Luo, UCSD Institute for Genomic Medicine and UCSD Department of Ophthalmology and Sichuan University, China.

Funding for this research came, in part, from the National Natural Science Foundation of China, National Science Foundation for Young Scholars of China, National Natural Science Foundation of Guangdong, Key Project of Guangzhou Health Bureau, Major Project of Guangzhou Science and Technology and Information Bureau, 973 program and Burroughs Wellcome Fund.

Scott LaFee | Eurek Alert!
Further information:
http://www.ucsd.edu

Further reports about: DNA Ophthalmology UCSD abnormalities chromosomal defects fetal invasive pregnant prenatal

More articles from Health and Medicine:

nachricht Mobile phone test can reveal vision problems in time
11.02.2016 | University of Gothenburg

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>