Detecting autism from brain activity

Neuroscientists from Case Western Reserve University School of Medicine and the University of Toronto have developed an efficient and reliable method of analyzing brain activity to detect autism in children. Their findings appear today in the online journal PLOS ONE.

The researchers recorded and analyzed dynamic patterns of brain activity with magnetoencephalography (MEG) to determine the brain's functional connectivity – that is, its communication from one region to another. MEG measures magnetic fields generated by electrical currents in neurons of the brain.

Roberto Fernández Galán, PhD, an assistant professor of neurosciences at Case Western Reserve and an electrophysiologist seasoned in theoretical physics led the research team that detected autism spectrum disorder (ASD) with 94 percent accuracy. The new analytic method offers an efficient, quantitative way of confirming a clinical diagnosis of autism.

“We asked the question, 'Can you distinguish an autistic brain from a non-autistic brain simply by looking at the patterns of neural activity?' and indeed, you can,” Galán said. “This discovery opens the door to quantitative tools that complement the existing diagnostic tools for autism based on behavioral tests.”

In a study of 19 children—nine with ASD—141 sensors tracked the activity of each child's cortex. The sensors recorded how different regions interacted with each other while at rest, and compared the brain's interactions of the control group to those with ASD. Researchers found significantly stronger connections between rear and frontal areas of the brain in the ASD group; there was an asymmetrical flow of information to the frontal region, but not vice versa.

The new insight into the directionality of the connections may help identify anatomical abnormalities in ASD brains. Most current measures of functional connectivity do not indicate the interactions' directionality.

“It is not just who is connected to whom, but rather who is driving whom,” Galán said.

Their approach also allows them to measure background noise, or the spontaneous input driving the brain's activity while at rest. A spatial map of these inputs demonstrated there was more complexity and structure in the control group than the ASD group, which had less variety and intricacy. This feature offered better discrimination between the two groups, providing an even stronger measure of criteria than functional connectivity alone, with 94 percent accuracy.

Case Western Reserve's Office of Technology Transfer has filed a provisional patent application for the analysis' algorithm, which investigates the brain's activity at rest. Galán and colleagues hope to collaborate with others in the autism field with emphasis on translational and clinical research.

Galán's collaborators and co-authors of this study are University of Toronto's associate researcher, Luis García Domínguez, PhD, and professor José Luis Pérez Velázquez, PhD.

About Case Western Reserve University School of Medicine
Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes–research and scholarship, clinical mastery, leadership, and civic professionalism–to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Nine Nobel Laureates have been affiliated with the School of Medicine.

Annually, the School of Medicine trains more than 800 MD and MD/PhD students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report's “Guide to Graduate Education.”

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu

Media Contact

Jessica Studeny EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors