Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desminopathies: RUB researchers gain new insights into the mechanisms of heart disease

23.05.2012
Aggregating instead of stabilizing
Mutated and intact proteins of the cytoskeleton form abnormal aggregates

Malformed desmin proteins aggregate with intact proteins of the same kind, thereby triggering skeletal and cardiac muscle diseases, the desminopathies. This was discovered by researchers from the RUB Heart and Diabetes Center NRW in Bad Oeynhausen led by PD Dr. Hendrik Milting in an interdisciplinary research project with colleagues from the universities in Karlsruhe, Würzburg and Bielefeld. They report in the Journal of Biological Chemistry.


Using Photo Activation Localization Microscopy (PALM), ten times the resolution (right) of conventional light microscopy (left) is achieved. The image shows a desmin filament which was taken with a conventional microscope and with the high-resolution PALM microscope. Illustration: Andreas Brodehl/Per Niklas Hedde

One defective gene is enough

Desmin normally forms stabilizing filaments inside of the cells. Different mutations in the DES gene, which contains the blueprint for the protein, induce different muscle diseases. Since chromosomes are always present in pairs, each cell has two DES genes on two different chromosomes. The desminopathies break out even if only one of the DES genes is mutated. With Photo Activation Localization Microscopy (PALM), the interdisciplinary team led by Dr. Milting revealed the mechanism behind this.

Making mutated and intact proteins visible

If one DES gene is mutated and one intact, a cell produces both malformed and normal proteins. Since not only the mutant desmin proteins clump together, but also the intact exemplars are incorporated into the aggregates, one defective DES gene is enough to trigger the disease. Using the PALM microscope, the researchers attach two different fluorescent molecules to the mutant and the intact proteins. They can turn these markers on and off by laser, effectively flashing them. From the “snapshots” of the intact and the mutated proteins, the computer then calculates a joint picture on which both protein variants can be seen. PALM is a novel microscopy technique that can achieve ten times higher resolution than conventional light microscopy.

Further research projects

In the next step, the research group would like to find out how mutations in the DES gene trigger what is termed arrhythmogenic right ventricular cardiomyopathy, ARVC for short. This rare heart muscle disease is characterized by a severe defect – especially to the right ventricle – and by heart rhythm problems that can lead to sudden cardiac death due to defects in the cell-cell contacts.

Bibliographic record

A. Brodehl et al. (2012): Dual-color photoactivation localization microscopy of cardiomyopathy associated desmin mutants, Journal of Biological Chemistry, doi: 10.1074/jbc.M111.313841

Further information

PD Dr. Hendrik Milting, Erich and Hanna Klessmann - Institute for Cardiovascular Research and Development, Heart and Diabetes Center NRW, Ruhr-Universität Bochum, Georgstraße 11, Bad Oeynhausen, Tel. 05731/97-3510

HMilting@hdz-nrw.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>