Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Deranged Calcium Signaling’ Contributes to Neurological Disorder

27.11.2008
Defective calcium metabolism in nerve cells may play a major role in a fatal genetic neurological disorder that resembles Huntington’s disease, researchers at UT Southwestern Medical Center have found in a mouse study.

The disease, called spinocerebellar ataxia 3 – also known as SCA3, or Machado-Joseph disease – is a genetic disorder that, like Huntington’s, impairs coordination, speech, and vision and causes brain atrophy. Although rare, the condition is one of the most common inherited forms of ataxia and most frequently affects people of Portuguese descent.

The UT Southwestern researchers previously had found that calcium flow within nerve cells is disrupted in Huntington’s disease. The latest findings, appearing in the Nov. 26 issue of the Journal of Neuroscience, suggest that SCA3, which is caused by a genetic defect similar to the one found in Huntington’s, involves the same “deranged calcium signaling,” researchers said.

Both SCA3 and Huntington’s are caused by repeating segments of DNA, although the repeats associated with each disease appear in different genes that code for different proteins. The genetic mutations cause repeated units of the amino acid glutamine to appear in the respective proteins. The more repeats there are, the earlier the onset of the disease.

In Huntington’s disease the mutated protein is Huntingtin; in SCA3 it is ataxin-3.

The researchers determined that the mutant human ataxin-3 activates a molecule that acts as a channel in the membrane of a sequestered chamber inside cells called the endoplasmic reticulum, or ER. The channel then releases calcium into the cell as a whole. Normal ataxin-3 did not activate the channel or cause calcium release.

The researchers also found that cells from a person with SCA3 showed abnormally high levels of calcium release when treated with bradykinin, a substance that also activates the calcium channel.

Such abnormal calcium release is toxic to cells and results in impaired motor function, said Dr. Ilya Bezprozvanny, professor of physiology at UT Southwestern and senior author of the study. “We’re generalizing the idea of calcium toxicity for this group of diseases, which are called polyglutamine expansion disorders,” he said.

The researchers also studied mice that had been genetically engineered to overexpress the human ataxin-3 protein containing excessive glutamine repeats. The mutant mice performed poorly on tests of motor coordination compared with normal mice and displayed age-dependent neuronal loss in the same brain regions that are affected in SCA3 patients.

To test whether blocking calcium release would alleviate symptoms in the mice, the researchers treated them for a year with dantrolene, a drug that blocks excessive calcium release from the ER in skeletal muscle cells. Dantrolene is approved for use in humans as a one-time emergency treatment for a reaction to anesthesia.

Treatment with dantrolene improved the coordination of the mutant mice and slowed brain atrophy.

Dantrolene is not suitable for long-term use in humans, however, because of side effects that can potentially harm the liver and the heart and cause neurological problems, said Dr. Bezprozvanny.

“The take-home message is not so much that dantrolene is the solution for treating SCA3, but that this shows a direction for research into a better drug to block similar targets with fewer side effects,” Dr. Bezprozvanny said.

The researchers now are studying whether blocking calcium release from the endoplasmic reticulum also can improve function in mouse models of Huntington’s and other neurodegenerative diseases such as spinocerebellar ataxia type 2 and Alzheimer’s disease.

Other UT Southwestern researchers involved in the study were Dr. Xi Chen, postdoctoral researcher in physiology; Dr. Tie-Shan Tang, instructor of physiology; Dr. Huiping Tu, former instructor of physiology; graduate student Omar Nelson; and Dr. Robert Hammer, professor of biochemistry. Researchers from Brunel University in London and RIKEN Brain Science Institute in Japan also participated.

The study was funded by the National Institutes of Health, the Robert A. Welch Foundation, the McKnight Endowment Fund for Neuroscience, the National Ataxia Foundation, Ataxia UK, Ataxia MJD Research Project Inc. and MEXT of Japan.

Dr. Ilya Bezprozvanny -- http://www.utsouthwestern.edu/findfac/professional/0,2356,20034,00.html

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/findfac/professional/0,2356,20034,00.html

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>