Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Depressed mice could aid research on drug-resistant depression in humans

30.06.2010
New research shows that a unique strain of laboratory mice characterized at Penn State University has behavioral, hormonal, and neurochemical characteristics that are similar to those of human patients with drug-resistant forms of depression.

The mice -- which have a defect in a gene -- are expected to be useful as a new model organism in the effort to develop more effective medications for specific forms of depression. The research, led by Bernhard Luscher, a professor of biology at Penn State, will be published in the journal Biological Psychiatry.

"A mouse can't tell us if it is feeling depressed, so we used a number of different kinds of tests -- including some new ones that we developed -- to gauge behavioral and hormonal changes, or phenotypes, of a type of depression that, in humans, does not respond well to some antidepressant drugs," Luscher said. "These indicators include reduced exploration of novel or otherwise aversive environments, failure to escape from a highly stressful situation, and reduced pleasure-seeking behavior such as a reduced preference for sweet over plain water."

The genetic defect in the depressed mice interferes with the function of a protein in the brain called the GABA-A receptor, which controls the response to the neurotransmitter gamma-aminobutryic acid. Reduced function of these receptors has been known to be be involved in anxiety disorders -- but not in depression -- because currently available drugs that activate the GABA-A receptor are ineffective as antidepressants. "We have shown in this paper that this long-held conviction is flawed," Luscher said. "Our research shows that the GABA-A receptor is, in fact, an important part of the brain circuitry that is not working properly in depression."

The genetically defective, GABA-A-receptor-deficient mice in Luscher's lab previously had been shown to be a good model organism for studies of anxiety, which often occurs along with depression. "About 70 percent of people who are treated for depression also are treated for anxiety at some time during their lives, and the drugs that are used in people as antidepressants act not only to reduce depression but also to reduce anxiety," Luscher said. "These facts suggests that whatever mechanism is defective in the brain is similar in both anxiety and depression."

One of the interesting results of Luscher's new research is that some antidepressant drugs completely reverse the behavioral and hormonal symptoms of depression in the GABA-A-receptor-deficient mice, bringing their behavior to the level of normal, "wild-type" mice. At the same time, the normal mice had almost no reaction to the drugs. "This result is expected of a mouse model that mimics depression because normal people do not seem to gain anything from taking antidepressants," Luscher explained. These experiments show that this strain of genetically defective mice is a useful animal model for laboratory studies that could be useful for understanding human depression.

One of the major gaps of knowledge about depression in humans is that scientists do not know why some antidepressant drugs fail to help about 30 percent of depressed patients. Because doctors don't have a way of knowing which drug has the best chance of working for a particular patient, they resort to trying one after another hoping to find one that will work. This problem is compounded by the fact that it can take weeks before the drugs show any measurable benefit.

Luscher's team tested two kinds of antidepressant drugs in the mice and found that one of the drugs reduced symptoms of anxiety, but not of depression, whereas the other drug reduced both anxiety and depression symptoms. "The one that did not normalize depression-related behaviors is fluoxetine -- the generic name for Prozac -- which works on the neurotransmitter serotonin," Luscher said. The drug that reduced both depression and anxiety symptoms in the mice is desipramine, which works on a different neurotransmitter, noradrenaline. These results are interesting because there is a large group of depressed patients that do not respond well to Prozac. "In human patients with a type of depression called melancholic depression, fluoxetine/Prozac doesn't work as an antidepressant but desipramine does work. These mice are a bit like those patients who don't respond to Prozac," Luscher said.

Patients who don't respond to Prozac have increased serum levels of the hormone cortisol, which in mice is called corticosterone. "Our mice also showed abnormal corticosterone levels analogous to those patients who don't respond to Prozac," Luscher said. "In people, the cortisol level is corrected by drugs such as desipramine, and so it is in our mice. Desipramine corrects corticosterone levels in our mice but fluoxetine does not."

Luscher's paper also describes how he has begun to use this mouse model of drug-resistant depression to learn about the role of developmental factors in the onset of depression. His research suggests that the hormonal defect alone is not sufficient to produce the behavioral symptoms of depression, at least not if the hormonal abnormality is present only in adulthood. "Some research indicates that if you are born with certain types of risk factors, and something highly stressful happens in your life, such as a war experience -- then that event can trigger a mood disorder if you already have a risk factor," Luscher said.

"One of the many things we now want to explore is whether a slightly different strain of GABA-A-receptor-deficient mice, which are behaviorally normal but have increased levels of stress hormones, are at risk of developing depression if they experience additional excessive stress," Luscher said. "We also want to understand in greater detail what happens in these mice biochemically -- to understand which genes throughout the entire genome are affected by the defect in this one gene, and the resulting depression-like brain state."

This research was supported by research grants from the U. S. National Institutes of Mental Health and the Pennsylvania Department of Health.

[ Barbara K. Kennedy ]

CONTACTS
Luscher: bxl25@psu.edu, 814-865-5549
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu
IMAGES
High-resolution illustrations related to this research are online at http://www.science.psu.edu/news-and-events/2010-news/Luscher6-2010

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>