Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dependence Alters the Brain's Response to Pot Paraphernalia

16.07.2014

New research from The University of Texas at Dallas demonstrates that drug paraphernalia triggers the reward areas of the brain differently in dependent and non-dependent marijuana users.

The study, published July 1 in Drug and Alcohol Dependence, demonstrated that different areas of the brain activated when dependent and non-dependent users were exposed to drug-related cues.

The 2012 National Survey on Drug Use and Health shows marijuana is the most widely used illicit drug in the United States. According to a 2013 survey from the Pew Research Center, 48 percent of Americans ages 18 and older have tried marijuana. The National Institute on Drug Abuse says that 9 percent of daily users will become dependent on marijuana.

“We know that people have a hard time staying abstinent because seeing cues for the drug use triggers this intense desire to seek out the drugs,” said Dr. Francesca Filbey, lead author of the study and professor at the Center for BrainHealth in the School of Behavioral and Brain Sciences. “That’s a clinically validated phenomenon and behavioral studies have also shown this to be the case. What we didn’t know was what was driving those effects in the brain.”

To find this effect, Filbey and colleagues conducted brain-imaging scans, called functional magnetic resonance imaging (fMRI), on 71 participants who regularly used marijuana. Just more than half of those were classified as dependent users. While being scanned, the participants were given either a used marijuana pipe or a pencil of approximately the same size that they could see and feel.

A comparison of the images revealed that the nucleus accumbens, the reward region in the brain, was activated in all users in response to the pipe. However, the strengths of the connections with other areas differed between dependent and non-dependent users.

“We found that the reward network is actually being driven by other areas unrelated to reward, like the areas in memory and attention or emotion,” Filbey said.

Non-dependent users showed greater activations in the orbital frontal cortex and hippocampus, suggesting that memory and attention were connected to the activation of the reward network. Dependent users had greater activations in the amygdala and anterior cingulate gyrus, suggesting a more emotional connection.

Additionally, the areas of the brain activated resemble areas activated for other addictions, such as nicotine or cocaine, lending greater support to the addictiveness of marijuana.

These findings suggest that marijuana abuse intervention needs to cater more specifically to a user’s level of addiction.

"Clinicians treating people with problems with marijuana dependence should consider the different processes that trigger the reward response when determining possible pharmacological or behavioral interventions,” Filbey said.

Dr. Joseph Dunlop, researcher at UT Dallas, also worked on the study. Research was conducted in part at the Mind Research Network and was funded by a grant from the National Institute on Drug Abuse.

Media Contact: Ben Porter, UT Dallas, (972) 883-2193, ben.porter@utdallas.edu
or Shelly Kirkland, UT Dallas Center for BrainHealth, (214) 905-3007, shelly.kirkland@utdallas.edu

Ben Porter | Eurek Alert!
Further information:
http://www.utdallas.edu/news/2014/7/16-30881_Study-Dependence-Alters-the-Brains-Response-to-Pot_story-wide.html

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>