Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dendritic cells spark smoldering inflammation in smokers' lungs

30.10.2009
Inflammation still ravages the lungs of some smokers years after they quit the habit.

What sparks that smoldering destruction remained a mystery until a consortium of researchers led by Baylor College of Medicine found that certain dendritic cells in the lung – the cells that "present" a foreign antigen or protein to the immune system – provoke production of destructive T-cells that attack a key protein called elastin, leading to death of lung tissue and emphysema.

A report of their work appears in the current issue of Science Transformational Medicine. The National Heart, Lung and Blood Institute estimates that 2 million Americans have emphysema, most of them over the age of 50 years. People with emphysema find it harder and harder to breathe as the lung's air sacs or alveoli are destroyed, causing holes in the lung and blocking airways. They have difficulty exchanging oxygen as their lungs become less elastic. Cigarette smoking is the greatest risk factor for the disease that contributes to as many as 100,000 deaths each year.

In previous work, Dr. Farrah Kheradmand, associate professor of medicine – pulmonary and immunology at BCM, and colleagues had shown that T-helper cells and some enzymes in the lung destroyed tissue in the lungs of emphysema patients. She credits BCM graduate student Ming Shan with pushing the project forward with the work in the current report.

She and her colleagues found that a subset of antigen-presenting cells in the lung are programmed to turn peripheral blood cells into the cells that are activated and are associated with autoimmune inflammation. They also found that elastin peptides can activate T cells –a sign that elastin is acting as an auto-antigen.

"This has implications for something that is important and biologically relevant," said Kheradmand. "Smokers are also at risk for diseases of the blood vessels such as the carotid artery and aorta. These blood vessels are also enriched in elastin. We believe that particular cells circulating in the body could react to elastin molecule at these remote sites."

This may help explain some of the cardiovascular and other complications associated with smoking tobacco. For example, skin is rich in elastin. The skin of smokers loses elasticity.

"We believe that this systemic inflammation that may initially affect the lung could also affect other parts of the body," she said.

She and fellow senior author Dr. David Corry, professor of medicine – pulmonary and immunology, and her colleagues used lung tissue taken from emphysema patients who were undergoing surgery anyway to determine which cells are present and their functions in the lung.

"These live cells are the center of what we studied," she said.

She and her colleagues found that some patients did not have the elastin-specific cells in their lungs, even though they had smoked.

"The Holy Grail is to find smokers who are destined to develop auto-reactive cells before the disease is fully manifested," she said. She said they hope to come with a test for T-cells that attack elastin that could be used in the doctor's office. However, she said, such a test would only identify patients at higher risk for emphysema and other elastin-associated diseases. It would not identify people at higher risk of lung cancer, for example.

"It is not a good excuse to smoke or continue smoking," she said.

Others who took part in the study include Han-Fang Cheng Li-zhen Song and Luz Roberts of BCM, Linda Green and Joan Hacken-Bitar of the Michael E. DeBakey Veterans Affairs Medical Center in Houston, Joseph Huh and Faisal Bakaeen of MEDVAMC and BCM, Harvey O. Coxson and Claudine Storness-Bliss of Vancouver General Hospital in British Columbia, Canada; Mahesh Ramchandani of The Methodist Hospital in Houston, and Seung-Hyo Lee of the Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.

Funding for this work came from the U.S. National Institutes of Health and the American Heart Association.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab.

Dipali Pathak | EurekAlert!
Further information:
http://www.bcm.edu
http://stm.sciencemag.org/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>