Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dendritic cell vaccine induces immune responses in patients

25.11.2010
Dartmouth Study Uses the Patient's Tumor to Form Vaccine

A new process for creating a personalized vaccine may become a crucial tool in helping patients with colorectal cancer develop an immune response against their own tumors. This dendritic cell (DC) vaccine, developed at Dartmouth and described in a research paper published this week in the journal Clinical Cancer Research, was used after surgical resection of metastatic tumors to try to prevent the growth of additional metastases.

"The results of the study suggest a new way to approach cancer treatment," said Richard Barth Jr., MD, Chief of General Surgery at Dartmouth-Hitchcock Medical Center and a member of the Gastrointestinal Clinical Oncology Group at Dartmouth-Hitchcock Norris Cotton Cancer Center, who is the study's principal investigator. "Basically, we've worked out a way to use dendritic cells, which initiate immune responses, to induce an antitumor response."

Dendritic cells are critical to the human body's immune system, helping identify targets, or antigens, and then stimulating the immune system to react against those antigens.; The new research grew dendritic cells from a sample of a patient's blood, mixed them with proteins from the patient's tumor, and then injected the mixture into the patient as a vaccine. The vaccine then stimulated an anti-tumor response from T-cells, a kind of white blood cell that protects the body from disease.

In the study, Barth first operated on 26 patients to remove tumors that had spread from the colon to the liver. While some of these patients would be expected to be cured with surgery alone, most of them would eventually die from tiny metastases that were undetectable at the time the tumors were removed from the liver. The DC vaccine treatment was given one month after surgery. The results were that T-cell immune responses were induced against the patient's own tumor in more than 60% of the patients. The patients were followed for a minimum of 5.5 years.; Five years after their vaccine treatment, 63% of the patients who developed an immune response against their own tumor were alive and tumor-free. In contrast, just 18% of the patients who did not develop an immune response against their own tumor were alive and tumor-free.

"We showed that a tumor lysate-pulsed DC vaccine can induce immune responses against the patient's own tumor in a high proportion of patients," stated Dr. Barth, who has been investigating DC-based vaccines in mice and patients for more than 10 years. "There were two basic questions we wanted to answer: one, can we generate an antitumor response, and two, does it matter? From our research, the answer to both questions is yes."

He said DC vaccines have been a research interest at many institutions, and previous studies showed that DC vaccines could not reduce or eliminate measurable metastatic tumor deposits. "It turned out we were asking the T-cells to do too much," he commented. "The small number of T-cells that are generated by a vaccine can't destroy a large tumor. However, what they may be able to do is search out and destroy tumor cells that exist as only microscopic tumor deposits. Once we brought patients into a measurable tumor-free condition with surgery, the anti-tumor T-cells induced by the DC vaccine may help keep them that way."

Follow-up studies are necessary to more fully understand the mechanisms of the DC vaccine and its impact on long-term survival rates, Dr. Barth said. He believes this study may open the door to a significant change in cancer treatment in the future. The DC vaccine is non-toxic, while traditional chemotherapies are highly toxic. "It's your own immune system doing the fighting," he commented. "I'm optimistic that this really will have an impact."

For more information contact Steve Bjerklie at (603) 653-9056.

Steven P. Bjerklie | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>