Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deficiency in p53 Anti-Tumor Protein Delays DNA Repair after Radiation, Moffitt Cancer Center Researchers Say

23.04.2013
Researchers at Moffitt Cancer Center have found that a deficiency in an important anti-tumor protein, p53, can slow or delay DNA repair after radiation treatment. They suggest that this is because p53 regulates the expression of two enzymes (JMJD2b and SUV39H1) that control the folding of DNA.
According to the researchers, p53 is highly inducible by radiation. Activation of p53 stabilizes chromosomes by promoting the repair of heterochromatin DNA, which controls the expression of nearby genes and ensures accurate distribution of chromosomes during cell division.

Their findings, which published online Feb. 4 in Oncogene, are significant because they shed light on the consequence of p53 deficiency that frequently occurs in tumors and further explain the function of p53 in the development of cancer.

Crucial to multicellular organisms, p53 is a tumor suppressor that regulates the cell cycle and helps prevent cancer by maintaining genetic stability and inhibiting gene mutation. But after irradiation, p53 deficiency results in abnormal levels of SUV39H1 and JMJD2b, enzymes that play a vital role in the structure of chromosomes, especially in DNA damage control and repair.

“Different tumor types have variable responses to ionizing radiation,” explained study lead author Jiandong Chen, Ph.D., senior member of the Cancer Biology and Molecular Medicine Program at Moffitt. “Radiation therapy is more effective if tumors are defective in repairing damaged DNA. The p53 pathway is compromised to different degrees in all tumors, which may explain the fact that radiation often kills tumor cells more than normal cells.”

In this study, the researchers worked with multiple cancer cell lines.

“We found that p53 activates JMJD2b and represses SUV39H1,” Chen said. “Depletion of JMJD2b, or sustained expression of SUV39H1, delays the repair of heterochromatin DNA after ionizing radiation,” explained Chen. “The DNA repair function of p53 may be particularly important in higher organisms because of the increased complexity of their genomes.”

Although they note that there is no general consensus on the relationship between p53 mutation status and treatment response, in certain narrow settings such as breast cancer, p53 mutation is associated with favorable response to chemotherapy.
“We can conclude that the chromatin modifiers SUV39H1 and JMJD2b are important mediators of p53 function in maintaining the stability of highly repetitive DNA sequences, and developing new drugs that target these enzymes may benefit cancer therapy,” the researchers wrote.

This work is supported by grants from the National Institutes of Health (CA141244, CA109636).

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>