Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep sequencing of breast cancer tumors to predict clinical outcomes after single dose of therapy

13.12.2013
New research data presented at the 2013 San Antonio Breast Cancer Symposium

New research from University Hospitals (UH) Case Medical Center Seidman Cancer Center and Case Comprehensive Cancer Center at Case Western Reserve University examined how changes in the genetic composition of breast cancer tumors after brief exposure to either biologic therapy or chemotherapy can predict future clinical outcomes in patients.

Results showed that through deep genome sequencing, a reduction in the most commonly mutated genes in breast cancer could be observed after just one dose of preoperative therapy. Deep sequencing is a process that involves sequencing the same region multiple times to identify mutations within tumors that have an importance in cancer evolution. These new findings were presented during the 2013 San Antonio Breast Cancer Symposium.

"Genomics is the new frontier of cancer research, and this study shows that we may be able to accurately determine what treatment methods will and will not be effective for individual patients after just one dose of medicine," said Lyndsay Harris, MD, study investigator and Director, Breast Cancer Program, UH Seidman Cancer Center and Professor of Medicine at Case Western Reserve University School of Medicine. "The ability to understand potential clinical outcomes for patients earlier in the treatment process would provide physicians with better opportunity to personalize patients' medicines according to their own tumor responses."

More than 209,000 patients in the U.S. are diagnosed with breast cancer each year. The anticipated outcome of studying the genetic makeup of breast cancer patients is to determine who will benefit most from certain drug therapies and to use that information to create a personalized treatment plan for each patient involved. Dr. Harris and team are currently integrating whole genome profiles with deep sequencing data as they spearhead a new study at UH Seidman Cancer Center to validate these initial findings presented in San Antonio.

Dr. Harris' co-presenters are: Nicole Williams, Vinay Varadan, Kristy Miskimen, Aditi Vadodkar, Debora Poruban,, Simone Edelheit, Hannah Gilmore, Steve Maximuk, Natalie Sinclair, Kimberly Lezon-Geyda, Maysa Abu-Khalaf, William Sikov, University Hospitals Case Medical Center/Case Western Reserve University, Cleveland, OH; Yale University School of Medicine; Yale Comprehensive Cancer Center, New Haven, CT; Warren Alpert Medical School of Brown, Providence, RI.

About the Studies

P1-08-16: Poster Session 1: Prognosis and Response Prediction: Response Predictive Factors
Deep sequencing of breast tumor biopsies reveals an association between pathologic complete response (pCR) and reduction of TP53 clonal abundance upon brief exposure to therapy

Wednesday 12/11, 5:00 PM -7:00 PM

Investigators evaluated 120 Stage IIA to IIIB breast cancer patients and compared a first biopsy after brief exposure to either biologic or chemotherapy treatment with a second biopsy taken after surgery. Researchers utilized deep genomic sequencing to quantify the abundance of clonal mutations in breast core biopsies, assess changes in these mutations after brief exposure to a targeted therapy and then evaluate the corresponding change in abundance of these mutations after exposure. This process of quantifying and monitoring clonal mutations between initial therapy exposure and surgery allowed researchers to determine how changes in the abundance of these mutations related to a patient's response to preoperative therapy. Through this analysis, investigators determined that clonal abundance upon brief exposure to therapy may be associated with clinical outcomes.

About University Hospitals

University Hospitals, the second largest employer in Northeast Ohio, serves the needs of patients through an integrated network of hospitals, outpatient centers and primary care physicians in 16 counties. At the core of our health system is University Hospitals Case Medical Center, one of only 18 hospitals in the country to have been named to U.S. News & World Report's most exclusive rankings list: the Best Hospitals 2013-14 Honor Roll. The primary affiliate of Case Western Reserve University School of Medicine, UH Case Medical Center is home to some of the most prestigious clinical and research centers of excellence in the nation and the world, including cancer, pediatrics, women's health, orthopaedics and spine, radiology and radiation oncology, neurosurgery and neuroscience, cardiology and cardiovascular surgery, organ transplantation and human genetics. Its main campus includes the internationally celebrated UH Rainbow Babies & Children's Hospital, ranked among the top children's hospitals in the nation; UH MacDonald Women's Hospital, Ohio's only hospital for women; and UH Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center at Case Western Reserve University. UH Case Medical Center is the 2012 recipient of the American Hospital Association – McKesson Quest for Quality Prize for its leadership and innovation in quality improvement and safety.

Alicia Reale | EurekAlert!
Further information:
http://www.uhhospitals.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>