Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deep sequencing of breast cancer tumors to predict clinical outcomes after single dose of therapy

New research data presented at the 2013 San Antonio Breast Cancer Symposium

New research from University Hospitals (UH) Case Medical Center Seidman Cancer Center and Case Comprehensive Cancer Center at Case Western Reserve University examined how changes in the genetic composition of breast cancer tumors after brief exposure to either biologic therapy or chemotherapy can predict future clinical outcomes in patients.

Results showed that through deep genome sequencing, a reduction in the most commonly mutated genes in breast cancer could be observed after just one dose of preoperative therapy. Deep sequencing is a process that involves sequencing the same region multiple times to identify mutations within tumors that have an importance in cancer evolution. These new findings were presented during the 2013 San Antonio Breast Cancer Symposium.

"Genomics is the new frontier of cancer research, and this study shows that we may be able to accurately determine what treatment methods will and will not be effective for individual patients after just one dose of medicine," said Lyndsay Harris, MD, study investigator and Director, Breast Cancer Program, UH Seidman Cancer Center and Professor of Medicine at Case Western Reserve University School of Medicine. "The ability to understand potential clinical outcomes for patients earlier in the treatment process would provide physicians with better opportunity to personalize patients' medicines according to their own tumor responses."

More than 209,000 patients in the U.S. are diagnosed with breast cancer each year. The anticipated outcome of studying the genetic makeup of breast cancer patients is to determine who will benefit most from certain drug therapies and to use that information to create a personalized treatment plan for each patient involved. Dr. Harris and team are currently integrating whole genome profiles with deep sequencing data as they spearhead a new study at UH Seidman Cancer Center to validate these initial findings presented in San Antonio.

Dr. Harris' co-presenters are: Nicole Williams, Vinay Varadan, Kristy Miskimen, Aditi Vadodkar, Debora Poruban,, Simone Edelheit, Hannah Gilmore, Steve Maximuk, Natalie Sinclair, Kimberly Lezon-Geyda, Maysa Abu-Khalaf, William Sikov, University Hospitals Case Medical Center/Case Western Reserve University, Cleveland, OH; Yale University School of Medicine; Yale Comprehensive Cancer Center, New Haven, CT; Warren Alpert Medical School of Brown, Providence, RI.

About the Studies

P1-08-16: Poster Session 1: Prognosis and Response Prediction: Response Predictive Factors
Deep sequencing of breast tumor biopsies reveals an association between pathologic complete response (pCR) and reduction of TP53 clonal abundance upon brief exposure to therapy

Wednesday 12/11, 5:00 PM -7:00 PM

Investigators evaluated 120 Stage IIA to IIIB breast cancer patients and compared a first biopsy after brief exposure to either biologic or chemotherapy treatment with a second biopsy taken after surgery. Researchers utilized deep genomic sequencing to quantify the abundance of clonal mutations in breast core biopsies, assess changes in these mutations after brief exposure to a targeted therapy and then evaluate the corresponding change in abundance of these mutations after exposure. This process of quantifying and monitoring clonal mutations between initial therapy exposure and surgery allowed researchers to determine how changes in the abundance of these mutations related to a patient's response to preoperative therapy. Through this analysis, investigators determined that clonal abundance upon brief exposure to therapy may be associated with clinical outcomes.

About University Hospitals

University Hospitals, the second largest employer in Northeast Ohio, serves the needs of patients through an integrated network of hospitals, outpatient centers and primary care physicians in 16 counties. At the core of our health system is University Hospitals Case Medical Center, one of only 18 hospitals in the country to have been named to U.S. News & World Report's most exclusive rankings list: the Best Hospitals 2013-14 Honor Roll. The primary affiliate of Case Western Reserve University School of Medicine, UH Case Medical Center is home to some of the most prestigious clinical and research centers of excellence in the nation and the world, including cancer, pediatrics, women's health, orthopaedics and spine, radiology and radiation oncology, neurosurgery and neuroscience, cardiology and cardiovascular surgery, organ transplantation and human genetics. Its main campus includes the internationally celebrated UH Rainbow Babies & Children's Hospital, ranked among the top children's hospitals in the nation; UH MacDonald Women's Hospital, Ohio's only hospital for women; and UH Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center at Case Western Reserve University. UH Case Medical Center is the 2012 recipient of the American Hospital Association – McKesson Quest for Quality Prize for its leadership and innovation in quality improvement and safety.

Alicia Reale | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>