Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding the secrets of balance

27.07.2012
New understanding of how the brain processes information from inner ear offers hope for sufferers of vertigo

If you have ever looked over the edge of a cliff and felt dizzy, you understand the challenges faced by people who suffer from symptoms of vestibular dysfunction such as vertigo and dizziness.

There are over 70 million of them in North America. For people with vestibular loss, performing basic daily living activities that we take for granted (e.g. dressing, eating, getting in and out of bed, getting around inside as well as outside the home) becomes difficult since even small head movements are accompanied by dizziness and the risk of falling.

We’ve known for a while that a sensory system in the inner ear (the vestibular system) is responsible for helping us keep our balance by giving us a stable visual field as we move around. And while researchers have already developed a basic understanding of how the brain constructs our perceptions of ourselves in motion, until now no one has understood the crucial step by which the neurons in the brain select the information needed to keep us in balance.

The way that the brain takes in and decodes information sent by neurons in the inner ear is complex. The peripheral vestibular sensory neurons in the inner ear take in the time varying acceleration and velocity stimuli caused by our movement in the outside world (such as those experienced while riding in a car that moves from a stationary position to 50 km per hour). These neurons transmit detailed information about these stimuli to the brain (i.e. information that allows one to reconstruct how these stimuli vary over time) in the form of nerve impulses.

Scientists had previously believed that the brain decoded this information linearly and therefore actually attempted to reconstruct the time course of velocity and acceleration stimuli. But by combining electrophysiological and computational approaches, Kathleen Cullen and Maurice Chacron, two professors in McGill University’s Department of Physiology, have been able to show for the first time that the neurons in the vestibular nuclei in the brain instead decode incoming information nonlinearly as they respond preferentially to unexpected, sudden changes in stimuli.

It is known that representations of the outside world change at each stage in this sensory pathway. For example, in the visual system neurons located closer to the periphery of the sensory system (e.g. ganglion cells in the retina) tend to respond to a wide range of sensory stimuli (a “dense” code), whereas central neurons (e.g. in the primary visual cortex at the back of the head tend to respond much more selectively (a “sparse” code). Chacron and Cullen have discovered that the selective transmission of vestibular information they were able to document for the first time occurs as early as the first synapse in the brain. “We were able to show that the brain has developed this very sophisticated computational strategy to represent sudden changes in movement in order to generate quick accurate responses and maintain balance,” explained Prof. Cullen. “I keep describing it as elegant, because that’s really how it strikes me.”

This kind of selectivity in response is important for everyday life, since it enhances the brain’s perception of sudden changes in body posture. So that if you step off an unseen curb, within milliseconds, your brain has both received the essential information and performed the sophisticated computation needed to help you readjust your position. This discovery is expected to apply to other sensory systems and eventually to the development of better treatments for patients who suffer from vertigo, dizziness, and disorientation during their daily activities. It should also lead to treatments that will help alleviate the symptoms that accompany motion and/or space sickness produced in more challenging environments.

The research was conducted by Corentin Massot a Postdoctoral fellow in the Department of Physiology, and Adam Schneider a Ph.D. Student in the Department of Physics.

To read an abstract of the paper

The research was funded by: The Canadian Institutes of Health Research (CIHR) and the Fonds de recherche du Québec - Nature et technologies (FQRNT)

Katherine Gombay | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>