Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dead on against Tremors - Imaging technique improves tremor surgery

12.09.2014

Freiburg researchers publish in Neurosurgery

The idea of having a doctor operate on your open brain while you are wide awake does not sound pleasant. Unfortunately, however, deep brain stimulation in a fully conscious state is currently the only operative method available for many patients suffering from tremor diseases who can no longer tolerate the medications and long years of suffering brought on by their condition.


A patient's two-sided deep brain stimulation of the tremor bundles

Medical Center - University of Freiburg/Volker Arnd Coenen

A Freiburg research team led by Prof. Dr. Volker Arnd Coenen, medical director of the Division of Stereotactic and Functional Neurosurgery at the Medical Center – University of Freiburg, has now succeeded in more accurately determining the position of the particular bundle of nerve fibers in the brain that deep brain stimulation needs to activate.

In the long term, the scientists hope this will allow surgeons to conduct deep brain stimulation to patients under general anesthesia, while at the same time reducing the risk of bleeding. The Freiburg researchers published the results of their study in the renowned journal Neurosurgery.

In their study on treating tremor-dominant Parkinson’s disease and essential tremor diseases by means of deep brain stimulation, the scientists compared the current method for detecting the fiber bundle with diffusion tensor tractography.

“This imaging technique produces images that are so precise that it is possible to determine the position of the fiber bundle in the brain with a margin of error of less than two millimeters. This reduces the amount of paths the electrodes need to take on the way to the target tissue in the brain, lowering the risk of vascular bleeding,” says Prof. Coenen.

Up to now, it was only possible to determine the target area indirectly on the basis of atlas data. The surgeons opens the skulls of fully conscious patients and conduct deep brain stimulation, steering the electrode toward regions in which they suspect that stimulation will lead to a reduction in the tremors.

If the point does not react to the stimulation, they remove the electrode and then direct it to another point via a new path from the surface. Each test increases the risk of damage to blood vessels and thus of vascular bleeding. The new method will make the operation safer for patients, as it will enable the surgeons to create a highly precise image of the tremor-reducing bundle structure directly.

The Freiburg researchers will soon begin two clinical studies applying this technology to essential tremor and Parkinson’s disease. The goal of the studies is to corroborate the findings from the current study.

Diffusion tensor tractography is an imaging technique that measures the diffusion of water molecules in body tissue with the help of magnetic resonance imaging (MRI) and represents it in spatially resolved form. It is particularly suitable for studying the brain because the diffusion behavior in the tissue undergoes characteristic changes in several diseases, allowing scientists to infer the course of the large bundles of nerve fibers. Diffusion tensor tractography has already been proven effective at detecting a new target site for stimulating the brain to treat depression, the medial forebrain bundle.

Deep brain stimulation influences and breaks up abnormal oscillations of nerve tissue with fine electric impulses. It requires the implantation of a brain pacemaker. The advantage of deep brain stimulation is that it provides constant, uninterrupted stimulation. When it is turned off, however, the symptoms return within minutes. Patients remain awake for most of the operation in which the neurostimuator is implanted, because “they help us to control the positioning of the electrodes,” says Prof. Coenen.

“We send a test impulse during the operation – when we’re at the right location, the patient’s symptoms, for instance trembling of the hands, are reduced immediately.” Currently, neurostimulation is not seen as a viable alternative until all other possible forms of therapy have been exhausted. But Prof. Coenen is confident: “Deep brain stimulation will gain importance as a therapy for various disorders.”

A tremor is defined as an involuntary, rhythmically repeating contraction of muscle groups that work in opposition to each other. The so-called physiological tremor can be measured, but it is almost impossible to see. A tremor only becomes visible when it appears as a symptom of a dis-ease, such as Parkinson’s disease.

The original publication, entitled “Modulation of the Cerebello-thalamo-cortical Network in Thalam-ic Deep Brain Stimulation for Tremor: A Diffusion Tensor Imaging Study,” is already available online and will also appear in the print version of Neurosurgery in December.
DOI: 10.1227/NEU0000000000000540

Contact:
Prof. Dr. Volker Arnd Coenen
Medical Director
Division of Stereotactic and Functional Neurosurgery
Phone: +49 (0)761 270-50630
volker.coenen@uniklinik-freiburg.de

Inga Schneider | idw - Informationsdienst Wissenschaft
Further information:
http://www.uniklinik-freiburg.de

Further reports about: Deep Diffusion Neurosurgery Parkinson’s Stereotactic Tremors bleeding symptoms technique

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>