Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New database to speed genetic discoveries

18.03.2013
Tool lets any clinician contribute information about patients for analysis

A new online database combining symptoms, family history and genetic sequencing information is speeding the search for diseases caused by a single rogue gene. As described in an article in the May issue of Human Mutation, the database, known as PhenoDB, enables any clinician to document cases of unusual genetic diseases for analysis by researchers at the Johns Hopkins University School of Medicine or the Baylor College of Medicine in Houston.

If a review committee agrees that the patient may indeed have a previously unknown genetic disease, the patient and some of his or her family members may be offered free comprehensive genetic testing in an effort to identify the disease culprit.

"PhenoDB is much more useful than I even thought it would be," says Ada Hamosh, M.D., M.P.H., a professor in the McKusick-Nathans Institute of Genetic Medicine at the Johns Hopkins University School of Medicine. "Bringing all of this information together is crucial to figuring out what our genetic variations mean." The database is designed to capture a bevy of standardized information about phenotype, which Hamosh defines as "any characteristic of a person" — symptoms, personal and family health history, appearance, etc.

Hamosh and others developed PhenoDB for the Baylor-Hopkins Center for Mendelian Genomics (BHCMG), a four-year initiative that, together with its counterparts at Yale University and the University of Washington, is charged with uncovering the genetic roots of every disorder caused by a single faulty gene. There are an estimated 3,000 inherited disorders that have been described phenotypically in scientific papers but whose genetic causes have not yet been pinpointed, Hamosh says, but since many single-gene disorders are extremely rare, she suspects that many more have not yet made it into the literature.

The Centers for Mendelian Genomics have a powerful tool at their disposal, known as whole-exome sequencing. Just a few years ago, Hamosh explains, a geneticist trying to diagnose the cause of an inherited disease would have made an educated guess based on the patient's signs and symptoms about which gene might be at fault, and ordered a test of that gene. If the test came back negative for a mutation, she would order a test of a different gene, and so on. But whole-exome sequencing, in which about 90% of a person's genes are sequenced at one time, has been growing steadily cheaper, and it is this tool that the Centers will use to capture genetic sequencing information (whole-genome sequencing is the next step, but it remains too expensive for many uses, Hamosh notes, as it includes all of a person's DNA, most of which contains no genes).

However, making sense of the deluge of data yielded by whole-exome sequencing presents its own challenges. "The average person has tens of thousands of variations from the standard genetic sequence," Hamosh explains, "and we don't know what most of those variations mean." To parse these variations, she says, "one of the things that needs to change is that the lab doing the testing needs to have the whole phenotype, from head to toe." Researchers will then be better equipped to figure out which variations may or may not be relevant to a patient's illness. Another advantage of the database is that it enables colleagues at distant locations — such as Baylor and Johns Hopkins — to securely access the information and collaborate. Hamosh notes that the database enables different users to be afforded different levels of access — for example, a health provider will only be able to see the information he or she has entered — and that information is deidentified to protect patient privacy. In addition, providers must have patients' consent to be included in PhenoDB.

PhenoDB would be useful for any research project that seeks to match genomic information with its phenotypic effects, Hamosh says, and with that in mind, the Baylor-Hopkins Center for Mendelian Genomics has made the PhenoDB software available for free download at http://phenodb.net. She predicts that similar tools will soon be incorporated into electronic health records as well, so that "doctors will have patients' genomic information at their fingertips and can combine that with information about health history, disease symptoms and social situation to practice truly individualized medicine."

Other authors on the paper are Nara Sobreira, Julie Hoover-Fong, Corinne Boehm and David Valle, all of the Johns Hopkins University School of Medicine; V. Reid Sutton of Baylor College of Medicine; and François Schiettecatte of FS Consulting.

The Baylor-Hopkins Center for Mendelian Genomics is funded by the National Human Genome Research Institute (grant number 1U54HG006542).

Link to the paper: http://onlinelibrary.wiley.com/doi/10.1002/humu.22283/abstract

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>