Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers invent real time secondhand smoke sensor

20.03.2013
Mini prototype to be developed into wearable, affordable, reusable device

Making headway against a major public health threat, Dartmouth College researchers have invented the first ever secondhand tobacco smoke sensor that records data in real time, a new study in the journal Nicotine and Tobacco Research shows.

The researchers expect to soon convert the prototype, which is smaller and lighter than a cellphone, into a wearable, affordable and reusable device that helps to enforce no smoking regulations and sheds light on the pervasiveness of secondhand smoke. The sensor can also detect thirdhand smoke, or nicotine off-gassing from clothing, furniture, car seats and other material.

The device uses polymer films to reliably measure ambient nicotine vapor molecules and a sensor chip to record the real-time data, pinpointing when and where the exposure occurred and even the number of cigarettes smoked. The prototype proved successful in lab tests. Clinical studies will start this summer.

Such a device could help to enforce smoking bans in rental cars, hotel rooms, apartment buildings, restaurants and other places. It also could help convince smokers that smoking in other rooms, out of windows and using air fresheners still exposes children and other nonsmokers to secondhand smoke. The device would be more accurate and less expensive than current secondhand smoke sensors, which provide only an average exposure in a limited area over several days or weeks.

"This is a leap forward in secondhand smoke exposure detection technology," said Chemistry Professor Joseph BelBruno, whose lab conducted the research.

Federal health officials report there is no safe level of exposure to secondhand smoke, which increases the risks of cancer, cardiovascular disease and childhood illness. An estimated 88 million nonsmoking Americans, including 54 percent of children ages 3 years, are exposed to secondhand smoke.

The study was supported by the American Academy of Pediatrics Julius B. Richmond Center of Excellence, funded through the Flight Attendants Medical Research Institute, and by the Norris Cotton Cancer Center at Dartmouth Hitchcock Medical Center.

Dartmouth College has a patent pending for this technology.
Authors included Yuan Liu, Sadik Antwi-Boampong, and Joseph J. BelBruno of the department of chemistry at Dartmouth College; Mardi A. Crane of the department of microbiology and immunology at Geisel School of Medicine at Dartmouth; and Susanne E. Tanski of the department of microbiology and immunology and the Cancer Control Research Program, Norris Cotton Cancer Center, at the Geisel School of Medicine.

For more news, visit Dartmouth Now and follow us on Twitter.

John Cramer | EurekAlert!
Further information:
http://www.dartmouth.edu

Further reports about: Cancer Dartmouth Medical Wellness Medicine secondhand smoke

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>