Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dantrolene protects neurons from Huntington's disease

28.11.2011
Huntington's disease (HD) is characterized by ongoing destruction of specific neurons within the brain.

It affects a person's ability to walk, talk, and think - leading to involuntary movement and loss of muscle co-ordination. New research published in BioMed Central's open access journal Molecular Neurodegeneration shows that the RyanR inhibitor Dantrolene is able to reduce the severity of walking and balance problems in a mouse model of HD.

Progressive damage to medium spiny neurons (MSN) in the brain of a person with HD is responsible for many of the symptoms and is caused by an inherited recessive mutation in the gene 'Huntingtin'. The mutated version of this protein leads to abnormal release of calcium from stores within the neurons which in turn disrupts the connections between neurons firing and muscle contractions, and eventually kills the neurons.

Researchers from the University of Texas Southwestern Medical Center tested Dantrolene, a muscle relaxant which works by stabilizing calcium signaling, and showed that this drug could prevent calcium-dependent toxicity in laboratory grown neurons. The team led by Dr Ilya Bezprozvanny also found that Dantrolene could prevent destruction of co-ordination, measured by beam walking and footprint patterns, in mice with Huntington's-like disease.

Dr Bezprozvanny explained, "One of the features of HD mice is the progressive loss of their NeuN-positive neurons. Dantrolene was not only able to protect muscle co-ordination in mice with HD but also prevented destruction of NeuN positive neurons. Our results suggest that RyanR inhibitors, such as Dantrolene, should be considered as future treatments to slow down the effects of diseases like Huntington's."

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: 44-20-3192-2370
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Dantrolene is neuroprotective in Huntingtons disease transgenic mouse model Xi Chen, Jun Wu, Svetlana Lvovskaya, Emily Herndon, Charlene Supnet and Ilya Bezprozvanny. Molecular Neurodegeneration (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. Molecular Neurodegeneration is an open access, peer-reviewed online journal that encompasses all aspects of neurodegeneration research at the molecular and cellular levels.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>