Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous chemicals in food wrappers likely migrating to humans

09.11.2010
University of Toronto scientists have found that chemicals used to line junk food wrappers and microwave popcorn bags are migrating into food and being ingested by people where they are contributing to chemical contamination observed in blood.

Perfluorinated carboxylic acids or PFCAs are the breakdown products of chemicals used to make non-stick and water- and stain-repellant products ranging from kitchen pans to clothing to food packaging. PFCAs, the best known of which is perfluorooctanoic acid (PFOA), are found in humans all around the world.

"We suspected that a major source of human PFCA exposure may be the consumption and metabolism of polyfluoroalkyl phosphate esters or PAPs," says Jessica D’eon, a graduate student in the University of Toronto’s Department of Chemistry. "PAPs are applied as greaseproofing agents to paper food contact packaging such as fast food wrappers and microwave popcorn bags."

In the U of T study, rats were exposed to PAPs either orally or by injection and monitored for a three-week period to track the concentrations of the PAPs and PFCA metabolites, including PFOA, in their blood. Human exposure to PAPs had already been established by the scientists in a previous study. Researchers used the PAP concentrations previously observed in human blood together with the PAP and PFCA concentrations observed in the rats to calculate human PFOA exposure from PAP metabolism.

"We found the concentrations of PFOA from PAP metabolism to be significant and concluded that the metabolism of PAPs could be a major source of human exposure to PFOA, as well as other PFCAs," says Scott Mabury, the lead researcher and a professor in the Department of Chemistry at the University of Toronto.

"This discovery is important because we would like to control human chemical exposure, but this is only possible if we understand the source of this exposure. In addition, some try to locate the blame for human exposure on environmental contamination that resulted from past chemical use rather than the chemicals that are currently in production.

“In this study we clearly demonstrate that the current use of PAPs in food contact applications does result in human exposure to PFCAs, including PFOA. We cannot tell whether PAPs are the sole source of human PFOA exposure or even the most important, but we can say unequivocally that PAPs are a source and the evidence from this study suggests this could be significant."

Regulatory interest in human exposure to PAPs has been growing. Governments in Canada, the United States and Europe have signaled their intentions to begin extensive and longer-term monitoring programs for these chemicals. The results of this investigation provide valuable additional information to such regulatory bodies to inform policy regarding the use of PAPs in food contact applications.

The study was conducted by Jessica D’eon and Scott Mabury of the University of Toronto’s Department of Chemistry and is published today in Environmental Health Perspectives. Research was funded by the Natural Sciences and Engineering Research Council of Canada.

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>