Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dana-Farber Scientists find potential loophole in pancreatic cancer defenses

28.03.2013
Tumors rely on unusual metabolic pathway that might be blocked with drugs
Dana-Farber Cancer Institute scientists and colleagues have discovered that pancreatic cancer cells' growth and spread are fueled by an unusual metabolic pathway that someday might be blocked with targeted drugs to control the deadly cancer.

Cancer cells are known to "rewire" their metabolic circuits differently from normal cells to provide energy for cancerous growth. A study published today in Nature reveals that pancreatic tumor cells are dependent on an amino acid, glutamine, which they utilize via a molecular pathway that has no apparent backup system.

"Pancreatic cancer cells have painted themselves into a metabolic bottleneck," said Dana-Farber's Alec Kimmelman, MD, PhD, co-senior author of the publication with Lewis Cantley, PhD, of Weill Cornell Medical College. Their research showed "that if you suppress any enzyme in that pathway, the cancer cells cannot effectively compensate and they can no longer grow," Kimmelman said.

Moreover, the investigators said, this novel glutamine pathway in pancreatic tumors does not appear to be important for normal cells, suggesting that inhibitor drugs could block cancer cells' growth without harming healthy tissues and organs.

"We don't have a drug to do this in humans," Kimmelman said, "but we are working on inhibitors of enzymes in the glutamine pathway."

The research showed that the cancer gene KRAS, which is the "signature" genetic mutation occurring in pancreatic cancer, directs the metabolic rewiring that creates the tumors' dependence on the glutamine pathway. KRAS, Kimmelman explained, changes the expression of key enzymes that maintain this pathway.

Pancreatic cancer is one of the most lethal and treatment-resistant of all cancers, with a dismal survival rate, and scientists have been searching for any vulnerability that could be exploited. One of the newer strategies in cancer research is studying the metabolic differences between cancer cells and normal cells with the goal of depriving tumors of their fuel.

In order to grow, cells must prevent the accumulation of damaging oxygen "free radicals," and they do so by maintaining a chemical "redox balance." The researchers found that when they blocked any of several enzyme reactions in the glutamine pathway, it undermined redox balance and suppressed the growth of human pancreatic cancer cells transplanted to mice.

If drugs can be developed to shut down the glutamine pathway, Kimmelman suggested, they might make pancreatic tumors more susceptible to standard treatments, such as radiation and chemotherapy, that cause free radicals to accumulate in cancer cells.
Co-first authors of the report are Jaekyoung Son, PhD, in the Kimmelman lab, and Costas Lyssiotis, PhD in the Cantley lab.

The research was supported in part by National Cancer Institute grant RO1 CA157490 and grants T32 CA009382-26 and P01 CA117969.

--Written by Richard Saltus, Dana-Farber Cancer Institute

About Dana-Farber Cancer Institute

Dana-Farber Cancer Institute (http://www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Boston Children's Hospital as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Facebook: http://www.facebook.com/danafarbercancerinstitute and on Twitter: @danafarber.

Teresa Herbert | EurekAlert!
Further information:
http://www.dfci.harvard.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>