Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damming and damning hemorrhagic diseases

11.05.2015

Rift Valley fever virus' proteins imitate human DNA repair factors, say University of Montreal scientists. Using drugs to dam this chemical reaction would condemn the disease's infectiousness

A potential mechanism to combat diseases caused by haemorrhagic fever viruses has been discovered by researchers at the University of Montreal's Department of Biochemistry and Molecular Medicine.


Rift Valley fever virus' proteins imitate human DNA repair factors, say University of Montreal scientists. Using drugs to dam this chemical reaction would condemn the disease's infectiousness.

Credit: University of Montreal (officially Université de Montréal)

These diseases present a dramatic risk to human health as they often spread quickly and kill a high percentage of infected individuals, as demonstrated by the recent Ebola outbreaks. Effective treatments such as vaccines and drug therapies are not available for many of these infections since the outbreaks mostly occur in developing countries with limited financial resources.

Moreover, the genomes of many haemorrhagic fever viruses mutate rapidly, enabling them to quickly adapt to potential drug treatments and evade the immune system. "Although our work does not directly lead to treatments on a short term, it does identify a process where the virus could be vulnerable to drug therapy, or how we might design an attenuated viral strain for vaccine development," said first author Normand Cyr, a postdoctoral researcher.

"Identification of the Achilles heels of haemorrhagic fever viruses like the Rift Valley fever virus will help inspire additional research and eventually lead to the development of new therapeutic strategies to treat these deadly tropical infections."

The research was supervised by senior co-author Professor James Omichinski and published in the Proceedings of the National Academy of Sciences of the USA (PNAS). "Our group used Nuclear Magnetic Resonance (NMR) spectroscopy studies to investigate the structural properties of an important viral protein required for virulence of the Rift Valley fever virus, a virus that causes infections in both humans and livestock similar to the Ebola virus," Omichinski explained.

"Viral proteins such as the Non-structural protein (NSs) studied here bind to the transcription machinery of human cells via the p62 subunit of the TFIIH protein complex, which leads to the formation of nuclear filaments that are essential for propagation of the virus. The structural details reported show that the viral protein uses a simple so-called ΩXaV motif that is similar to that found in human DNA repair proteins, and blocking this binding event with drugs would certainly weaken the virulence of the virus."

"Viruses and other infectious agents mutate and constantly adapt to treatments. Therefore, it is critical to conduct this type of basic research so that humans can stay one step ahead of potential outbreaks of viral infections, which is one of the core missions of our Department," said Professor Christian Baron, Chair of the Department of Biochemistry and Molecular Medicine.

"The structural biology facilities at Université de Montréal are cutting edge, thanks to important investments from the Canada Foundation for Innovation, and these facilities are helping us to unravel the molecular details of how the Rift Vally fever virus functions," Omichinski added.

The University of Montreal team worked in collaboration with senior co-author Kylene Kehn-Hall's group at the National Center for Biodefense and Infectious Diseases in the United States, as the US team has specialized biosafety level 3 facilities where they can work with such contagious viruses.

Indeed, Americans and Canadians have every reason to be concerned about the future of this line of research. "Climate changes and world-wide travel are increasing the risk of haemorrhagic fever viruses even in Canada. Warmer temperatures and increased travel are bringing such tropical diseases much closer to home and as a result we cannot afford to ignore the global health status of populations in other countries. It is therefore critical that we gain more knowledge into the molecular details of viral function so that we can develop more effective treatments and control the spread of these diseases," Omichinski said.

###

About this study:

Cyr, Omichinski and their colleagues published "A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence" in the PNAS Early Edition on April 27, 2015. Work in the Omichinski laboratory is funded by the Canadian Institutes for Health Research and the National Science and Engineering Research Council of Canada. The University of Montreal is officially known as Université de Montréal.

Media Contact

William Raillant-Clark
rw.raillantclark@gmail.com
514-566-3813

 @uMontreal_news

http://bit.ly/mNqklw  

William Raillant-Clark | EurekAlert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>