Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damming and damning hemorrhagic diseases

11.05.2015

Rift Valley fever virus' proteins imitate human DNA repair factors, say University of Montreal scientists. Using drugs to dam this chemical reaction would condemn the disease's infectiousness

A potential mechanism to combat diseases caused by haemorrhagic fever viruses has been discovered by researchers at the University of Montreal's Department of Biochemistry and Molecular Medicine.


Rift Valley fever virus' proteins imitate human DNA repair factors, say University of Montreal scientists. Using drugs to dam this chemical reaction would condemn the disease's infectiousness.

Credit: University of Montreal (officially Université de Montréal)

These diseases present a dramatic risk to human health as they often spread quickly and kill a high percentage of infected individuals, as demonstrated by the recent Ebola outbreaks. Effective treatments such as vaccines and drug therapies are not available for many of these infections since the outbreaks mostly occur in developing countries with limited financial resources.

Moreover, the genomes of many haemorrhagic fever viruses mutate rapidly, enabling them to quickly adapt to potential drug treatments and evade the immune system. "Although our work does not directly lead to treatments on a short term, it does identify a process where the virus could be vulnerable to drug therapy, or how we might design an attenuated viral strain for vaccine development," said first author Normand Cyr, a postdoctoral researcher.

"Identification of the Achilles heels of haemorrhagic fever viruses like the Rift Valley fever virus will help inspire additional research and eventually lead to the development of new therapeutic strategies to treat these deadly tropical infections."

The research was supervised by senior co-author Professor James Omichinski and published in the Proceedings of the National Academy of Sciences of the USA (PNAS). "Our group used Nuclear Magnetic Resonance (NMR) spectroscopy studies to investigate the structural properties of an important viral protein required for virulence of the Rift Valley fever virus, a virus that causes infections in both humans and livestock similar to the Ebola virus," Omichinski explained.

"Viral proteins such as the Non-structural protein (NSs) studied here bind to the transcription machinery of human cells via the p62 subunit of the TFIIH protein complex, which leads to the formation of nuclear filaments that are essential for propagation of the virus. The structural details reported show that the viral protein uses a simple so-called ΩXaV motif that is similar to that found in human DNA repair proteins, and blocking this binding event with drugs would certainly weaken the virulence of the virus."

"Viruses and other infectious agents mutate and constantly adapt to treatments. Therefore, it is critical to conduct this type of basic research so that humans can stay one step ahead of potential outbreaks of viral infections, which is one of the core missions of our Department," said Professor Christian Baron, Chair of the Department of Biochemistry and Molecular Medicine.

"The structural biology facilities at Université de Montréal are cutting edge, thanks to important investments from the Canada Foundation for Innovation, and these facilities are helping us to unravel the molecular details of how the Rift Vally fever virus functions," Omichinski added.

The University of Montreal team worked in collaboration with senior co-author Kylene Kehn-Hall's group at the National Center for Biodefense and Infectious Diseases in the United States, as the US team has specialized biosafety level 3 facilities where they can work with such contagious viruses.

Indeed, Americans and Canadians have every reason to be concerned about the future of this line of research. "Climate changes and world-wide travel are increasing the risk of haemorrhagic fever viruses even in Canada. Warmer temperatures and increased travel are bringing such tropical diseases much closer to home and as a result we cannot afford to ignore the global health status of populations in other countries. It is therefore critical that we gain more knowledge into the molecular details of viral function so that we can develop more effective treatments and control the spread of these diseases," Omichinski said.

###

About this study:

Cyr, Omichinski and their colleagues published "A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence" in the PNAS Early Edition on April 27, 2015. Work in the Omichinski laboratory is funded by the Canadian Institutes for Health Research and the National Science and Engineering Research Council of Canada. The University of Montreal is officially known as Université de Montréal.

Media Contact

William Raillant-Clark
rw.raillantclark@gmail.com
514-566-3813

 @uMontreal_news

http://bit.ly/mNqklw  

William Raillant-Clark | EurekAlert!

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>