Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Damaged Hearts Pump Better When Fueled With Fats

05.05.2011
Research Holds Promise for Heart Failure Patients

Contrary to what we’ve been told, eliminating or severely limiting fats from the diet may not be beneficial to cardiac function in patients suffering from heart failure, a study at Case Western Reserve University School of Medicine reports. Results from biological model studies conducted by assistant professor of physiology and biophysics Margaret Chandler, PhD, and other researchers, demonstrate that a high-fat diet improved overall mechanical function, in other words, the heart’s ability to pump, and was accompanied by cardiac insulin resistance.

“Does that mean I can go out and eat my Big Mac after I have a heart attack,” Dr. Chandler says “No, but treatments that act to provide sufficient energy to the heart and allow the heart to utilize or to maintain its normal metabolic profile may actually be advantageous.” The research, published in American Journal of Physiology-Heart and Circulatory Physiology, suggests that for a damaged heart, a balanced diet that includes mono- and polyunsaturated fats, and which replaces simple sugars (sucrose and fructose) with complex carbohydrates, may be beneficial.

In a healthy person, the heart uses both fats and carbohydrates to obtain the energy it needs to continue pumping blood 24/7. Ideally, fats are utilized because they yield more energy. However, if a person develops heart failure (or suffers from ischemia – a lack of blood supply), the heart seems to prefer using glucose for fuel, because glucose requires less oxygen to produce energy. While heart disease remains the leading cause of death in the United States, more people are surviving heart attacks that ever before. Survivors though pay a price for this improved survival, living with a damaged heart that usually progresses to heart failure. And unfortunately, medications and procedures have yet to “cure” heart failure, or halt the deterioration of heart function.

Upon initiation of these dietary intervention studies, researchers previously thought a high-fat diet fed to animal models that have suffered a heart attack, would overload their tissues with fat, which in turn would have a toxic effect on their hearts. Surprisingly, the heart’s pump function improved on the high-fat diet. Through further testing, the researchers found that animal models suffering from heart failure and receiving a low fat diet were able to produce insulin and take up glucose from the blood, just as healthy hearts do.

However, the biological models with heart failure that were fed high-fat diets showed signs of insulin resistance, exhibited by a decreased amount of glucose taken up by the heart, as might be expected in a diabetic patient. One of the main implications of these findings is that contrary to previously held beliefs, a state of insulin-resistance might actually be beneficial to a failing heart. The hypothesis, according to Dr. Chandler, is that because the heart is being provided with excess amounts of fats, it is forced to utilize its preferred energy source. After suffering an injury that leads to failure, the heart cannot do this on its own, so the researchers have to manipulate its metabolism to use the energy source that maximizes or maintain its function as near to “normal” as possible.

“We want to provide an environment for the heart which allows it to be as effective and efficient a pump as possible, regardless of the damage it has undergone,” Dr. Chandler says. This study was funded by the National Institutes of Health, the American Heart Association, and the Case Center for Imaging Research. Prepared by Salam Kabbani, a third-year student at Case Western Reserve University.

About Case Western Reserve University School of Medicine
Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 20 among U.S. research-oriented medical schools as designated by U.S. News & World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Jessica Studeny | EurekAlert!
Further information:
http://www.case.edu/medicus/breakingnews/damagedheartsandfat.html

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>