Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Daily vibration may help aging bones stay healthy

26.10.2010
A daily dose of whole body vibration may help reduce the usual bone density loss that occurs with age, Medical College of Georgia researchers report.

Twelve weeks of daily, 30-minute sessions in 18-month old male mice – which equate to 55- to 65-year-old humans – appear to forestall the expected annual loss that can result in fractures, disability and death. Dr. Karl H. Wenger, biomedical engineer in the MCG Schools of Graduate Studies and Medicine, reported the findings with his colleagues in the journal Bone.

Researchers found vibration improved density around the hip joint with a shift toward higher density in the femur, the long bone of the leg, as well. Hip fractures are a major cause of disability and death among the elderly.

They also found a reduction in a biomarker that indicates bone breakdown and an increase in the surface area involved in bone formation in the vibrating group.

The findings provide more scientific evidence that the technique, which dates back to the 1800s and is now showing up in homes, gyms and rehabilitation clinics, has bone benefit, particularly as a low-risk option for injured individuals with limited mobility, Wenger said.

The scientists theorize that the rhythmic movement, which produces a sensation similar to that of a vibrating cell phone but on a larger scale, exercises cells so they work better. Vibration prompts movement of the cell nucleus, which is suspended by numerous threadlike fibers called filaments. "The filaments get all deformed like springs and then they spring back," Wenger said.

All the movement releases transcription factors that spur new osteoblasts, the cells that make bone. With age, the balance of bone production and destruction – by osteoclasts – tips to the loss side.

In the case of an injury, vibration acts on stem cells, the master controllers of the healing process. "We think that in fracture healing, you get a more dramatic response. We don't know exactly why it affects the biology differently but it's likely because of the extent to which stem cells invade the injured area," Wenger said. They have found that vibration slows stem cell proliferation, which may sound counterintuitive, but likely means more stem cells differentiate into bone cells rather than continuing to just make more generic stem cells. With age, stem cells have difficulty differentiating.

To see if their findings translate to the trauma clinic, they are evaluating vibration tolerance in patients with lower-limb fractures and finding, surprisingly, that even two weeks after injury the subtle vibration is soothing, rather than painful, to most.

The bone group, based in the MCG Department of Orthopaedic Surgery, also is working with Georgia Prevention Institute scientists to explore vibration's potential to improve glucose uptake – to see if vibration results in more insulin production or aids glucose clearance in some other way – and whether, like exercise, it can reduce fatty liver disease in chunky, pre-diabetic children.

In related studies, postmenopausal women at the peak age of bone decline, experienced results similar to those of Wenger's aging mice. Wenger's studies used only male mice to mitigate the impact of fluctuating hormones and focus on aging. In the human study, led by Dr. Clinton T. Rubin at the State University of New York at Stony Brook, the women receiving daily whole body vibration didn't gain appreciable bone but they did not lose it either.

While vibration lacks the same cardiovascular benefit of exercise, animal and human studies also have shown it can improve muscle strength and weight loss.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>