Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Daily vibration may help aging bones stay healthy

26.10.2010
A daily dose of whole body vibration may help reduce the usual bone density loss that occurs with age, Medical College of Georgia researchers report.

Twelve weeks of daily, 30-minute sessions in 18-month old male mice – which equate to 55- to 65-year-old humans – appear to forestall the expected annual loss that can result in fractures, disability and death. Dr. Karl H. Wenger, biomedical engineer in the MCG Schools of Graduate Studies and Medicine, reported the findings with his colleagues in the journal Bone.

Researchers found vibration improved density around the hip joint with a shift toward higher density in the femur, the long bone of the leg, as well. Hip fractures are a major cause of disability and death among the elderly.

They also found a reduction in a biomarker that indicates bone breakdown and an increase in the surface area involved in bone formation in the vibrating group.

The findings provide more scientific evidence that the technique, which dates back to the 1800s and is now showing up in homes, gyms and rehabilitation clinics, has bone benefit, particularly as a low-risk option for injured individuals with limited mobility, Wenger said.

The scientists theorize that the rhythmic movement, which produces a sensation similar to that of a vibrating cell phone but on a larger scale, exercises cells so they work better. Vibration prompts movement of the cell nucleus, which is suspended by numerous threadlike fibers called filaments. "The filaments get all deformed like springs and then they spring back," Wenger said.

All the movement releases transcription factors that spur new osteoblasts, the cells that make bone. With age, the balance of bone production and destruction – by osteoclasts – tips to the loss side.

In the case of an injury, vibration acts on stem cells, the master controllers of the healing process. "We think that in fracture healing, you get a more dramatic response. We don't know exactly why it affects the biology differently but it's likely because of the extent to which stem cells invade the injured area," Wenger said. They have found that vibration slows stem cell proliferation, which may sound counterintuitive, but likely means more stem cells differentiate into bone cells rather than continuing to just make more generic stem cells. With age, stem cells have difficulty differentiating.

To see if their findings translate to the trauma clinic, they are evaluating vibration tolerance in patients with lower-limb fractures and finding, surprisingly, that even two weeks after injury the subtle vibration is soothing, rather than painful, to most.

The bone group, based in the MCG Department of Orthopaedic Surgery, also is working with Georgia Prevention Institute scientists to explore vibration's potential to improve glucose uptake – to see if vibration results in more insulin production or aids glucose clearance in some other way – and whether, like exercise, it can reduce fatty liver disease in chunky, pre-diabetic children.

In related studies, postmenopausal women at the peak age of bone decline, experienced results similar to those of Wenger's aging mice. Wenger's studies used only male mice to mitigate the impact of fluctuating hormones and focus on aging. In the human study, led by Dr. Clinton T. Rubin at the State University of New York at Stony Brook, the women receiving daily whole body vibration didn't gain appreciable bone but they did not lose it either.

While vibration lacks the same cardiovascular benefit of exercise, animal and human studies also have shown it can improve muscle strength and weight loss.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>