Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Daily vibration may help aging bones stay healthy

26.10.2010
A daily dose of whole body vibration may help reduce the usual bone density loss that occurs with age, Medical College of Georgia researchers report.

Twelve weeks of daily, 30-minute sessions in 18-month old male mice – which equate to 55- to 65-year-old humans – appear to forestall the expected annual loss that can result in fractures, disability and death. Dr. Karl H. Wenger, biomedical engineer in the MCG Schools of Graduate Studies and Medicine, reported the findings with his colleagues in the journal Bone.

Researchers found vibration improved density around the hip joint with a shift toward higher density in the femur, the long bone of the leg, as well. Hip fractures are a major cause of disability and death among the elderly.

They also found a reduction in a biomarker that indicates bone breakdown and an increase in the surface area involved in bone formation in the vibrating group.

The findings provide more scientific evidence that the technique, which dates back to the 1800s and is now showing up in homes, gyms and rehabilitation clinics, has bone benefit, particularly as a low-risk option for injured individuals with limited mobility, Wenger said.

The scientists theorize that the rhythmic movement, which produces a sensation similar to that of a vibrating cell phone but on a larger scale, exercises cells so they work better. Vibration prompts movement of the cell nucleus, which is suspended by numerous threadlike fibers called filaments. "The filaments get all deformed like springs and then they spring back," Wenger said.

All the movement releases transcription factors that spur new osteoblasts, the cells that make bone. With age, the balance of bone production and destruction – by osteoclasts – tips to the loss side.

In the case of an injury, vibration acts on stem cells, the master controllers of the healing process. "We think that in fracture healing, you get a more dramatic response. We don't know exactly why it affects the biology differently but it's likely because of the extent to which stem cells invade the injured area," Wenger said. They have found that vibration slows stem cell proliferation, which may sound counterintuitive, but likely means more stem cells differentiate into bone cells rather than continuing to just make more generic stem cells. With age, stem cells have difficulty differentiating.

To see if their findings translate to the trauma clinic, they are evaluating vibration tolerance in patients with lower-limb fractures and finding, surprisingly, that even two weeks after injury the subtle vibration is soothing, rather than painful, to most.

The bone group, based in the MCG Department of Orthopaedic Surgery, also is working with Georgia Prevention Institute scientists to explore vibration's potential to improve glucose uptake – to see if vibration results in more insulin production or aids glucose clearance in some other way – and whether, like exercise, it can reduce fatty liver disease in chunky, pre-diabetic children.

In related studies, postmenopausal women at the peak age of bone decline, experienced results similar to those of Wenger's aging mice. Wenger's studies used only male mice to mitigate the impact of fluctuating hormones and focus on aging. In the human study, led by Dr. Clinton T. Rubin at the State University of New York at Stony Brook, the women receiving daily whole body vibration didn't gain appreciable bone but they did not lose it either.

While vibration lacks the same cardiovascular benefit of exercise, animal and human studies also have shown it can improve muscle strength and weight loss.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>