Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CWRU School of Medicine researchers discover gene that permanently stops cancer cell proliferation

01.08.2012
Researchers at Case Western Reserve University School of Medicine have discovered a mutant form of the gene, Chk1, that when expressed in cancer cells, permanently stopped their proliferation and caused cell death without the addition of any chemotherapeutic drugs. This study illustrates an unprecedented finding, that artificially activating Chk1 alone is sufficient to kill cancer cells.

"We have identified a new direction for cancer therapy and the new direction is leading us to a reduction in toxicity in cancer therapy, compared with chemotherapy or radiation therapy," said Dr. Zhang, assistant professor, Department of Pharmacology at the School of Medicine, and member of the university's Case Comprehensive Cancer Center. "With this discovery, scientists could stop the proliferation of cancer cells, allowing physicians time to fix cells and genetic errors."

While studying the basic mechanisms for genome integrity, Dr. Zhang's team unexpectedly discovered an active mutant form of human Chk1, which is also a non-natural form of this gene. This mutation changed the protein conformation of Chk1 from the inactive form into an active form. Remarkably, the research team discovered that when expressed in cancer cells, this active mutant form of Chk1 permanently stopped cancer cell proliferation and caused cell death in petri dishes even without the addition of any chemotherapeutic drugs.

The biggest advantage of this potential strategy is that no toxic chemotherapeutic drug is needed to achieve the same cancer killing effect used with a combination of Chk1 inhibitors and chemotherapeutic drugs.

Cells respond to DNA damage by activating networks of signaling pathways, termed cell cycle checkpoints. Central to these genome pathways is the protein kinase, called Chk1. Chk1 facilitates cell survival, including cancer cells, under stressful conditions, such as those induced by chemotherapeutic agents, by placing a temporary stop on the cell cycle progression and coordinating repair programs to fix the DNA errors.

It has long been suggested that combining Chk1 inhibition with chemotherapy or radiotherapy should significantly enhance the anticancer effect of these therapies. This idea has serves as the basis for multiple pharmaceutical companies searching for potential Chk1 inhibitors that can effectively combine with chemotherapy in cancer therapy. To date, no Chk1 inhibitor has passed the clinical trial stage III . This led Dr. Zhang's team to look for alternative strategies for targeting Chk1 in cancer therapy.

Future research by Dr. Zhang and his team will consider two possible approaches to artificially activating Chk1 in cancer cells. One possibility is to use the gene therapy concept to deliver the active mutant form of Chk1 that the team discovered, into cancer cells. The other is to search for small molecules that can induce the same conformational change of Chk1, so that they can be delivered into cancer cells to activate Chk1 molecules. The consequence of either would be permanent cell proliferation inhibition and cancer.

All three authors of this study, Jingna Wang, Xiangzi Han and Youwei Zhang hold the title of Ph.D. and are members of the Department of Pharmacology, Case Western Reserve University School of Medicine, as well as members of the university's Case Comprehensive Cancer Center. Dr. Wang and Dr. Han are postdoctoral fellows. Dr. Zhang is an assistant professor.

This study is published in Cancer Research. Support for the study comes from the National Cancer Institute at the National Institute of Health,

Grants that supported this study are NCI R00CA126173 and R01CA163214.

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Nine Nobel Laureates have been affiliated with the school of medicine. Annually, the School of Medicine trains more than 800 MD and MD/PhD students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News & World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu.

About Case Comprehensive Cancer Center

Case Comprehensive Cancer Center is an NCI-designated Comprehensive Cancer Center located at Case Western Reserve University. The center, now in its 22nd year of funding, integrates the cancer research activities of the largest biomedical research and health care institutions in Ohio – Case Western Reserve, University Hospitals (UH) Case Medical Center, Cleveland Clinic and MetroHealth Medical Center. NCI-designated cancer centers are characterized by scientific excellence and the capability to integrate a diversity of research approaches to focus on the problem of cancer. It is led by Stanton Gerson, MD, Asa and Patricia Shiverick- Jane Shiverick (Tripp) Professor of Hematological Oncology, director of the National Center for Regenerative Medicine, Case Western Reserve, and director of the Seidman Cancer Center at UH Case Medical Center.

Christine A. Somosi | EurekAlert!
Further information:
http://www.casemed.case.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>