Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting calories could limit muscle wasting in later years

18.09.2008
Chemical concoctions can smooth over wrinkles and hide those pesky grays, but what about the signs of aging that aren't so easy to fix, such as losing muscle mass? Cutting calories early could help, say University of Florida researchers who studied the phenomenon in rats.

A restricted-calorie diet, when started in early adulthood, seems to stymie a mitochondrial mishap that may contribute to muscle loss in aging adults, the researchers reported recently in the journal PLoS One.

In rats, the scientists found pockets of excess iron in muscle cell mitochondria, the tiny power plants found in every cell. The excess iron affects the chemistry inside the mitochondria, sparking the formation of harmful free radicals that can lead a mitochondrion straight to the emergency exit, said Christiaan Leeuwenburgh, Ph.D., a UF professor of aging in the UF College of Medicine and the Institute on Aging.

Leeuwenburgh was the senior author of the study and of a related report published online this month in Aging Cell that details the damage done by excess iron in mitochondria.

"We become less efficient at an old age and we need to understand why this is," Leeuwenburgh said. "One thing, maybe, is the accumulation of redox-active metals in cells. If the mitochondria become unhappy or are ready to kick the bucket, they have proteins in the inner and outer membranes that they can open up and commit suicide. They're tricky beasts."

The suicidal mitochondria can damage the rest of the muscle cell, leading to cell death and perhaps to muscle wasting, a big problem for adults as they reach their mid-70s, Leeuwenburgh added.

"Muscle is critical for your overall well-being," Leeuwenburgh said. "As you walk, muscle functions partly as a pump to keep your blood going. Muscle is an incredible source of reserves."

The researchers found increasing amounts of iron in the muscle cells of aging rats fed a typical unrestricted diet. The older the rats got, the more iron accumulated in the mitochondria and the more damage was done to its RNA and DNA. Rats of the same ages that were kept on a calorie-restricted diet — about 60 percent of the food typically ingested — seemed to maintain more normal iron levels in mitochondria, the researchers reported.

"The novel thing here is that iron is accumulating in places it does not normally accumulate," said Mitch Knutson, Ph.D., a UF assistant professor of food science and human nutrition and a study co-author. "Such iron accumulation in muscle was quite unexpected. This may be of concern because more people are genetically predisposed to developing iron overload than we originally thought."

The problem occurs when metals such as iron accumulate in the mitochondria and react with oxygen. Iron can change the chemical structure of oxygen, triggering its metamorphosis into a free radical, an unstable atom that can upset the delicate balance inside the mitochondria. The result? Leeuwenburgh describes it sort of like internal rust.

"Not all free radicals are harmful," Leeuwenburgh said. "To just use antioxidants to neutralize all free radicals is a huge misconception because some radicals are helpful. You just need to try and target very specific free radicals that form in specific parts of the body."

Researchers don't know exactly what causes iron to accumulate in mitochondria in aging animals, but a breakdown in how iron is transported through cells could be one reason why, Leeuwenburgh said. Understanding how caloric restriction limits the problem in rats could help researchers better understand how to combat it, he added.

Russell T. Hepple, Ph.D., an associate professor of kinesiology and medicine at the University of Calgary in Canada, said the findings are another step forward in linking iron to muscle cell death, but there are more questions researchers must answer.

"They've shown that apoptosis (cell death) goes up in aging muscle but where does that happen?" Hepple asked. "There are more than muscle cells in muscle. (For example) in older adults there are inflammatory cells."

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>