Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting calories could limit muscle wasting in later years

18.09.2008
Chemical concoctions can smooth over wrinkles and hide those pesky grays, but what about the signs of aging that aren't so easy to fix, such as losing muscle mass? Cutting calories early could help, say University of Florida researchers who studied the phenomenon in rats.

A restricted-calorie diet, when started in early adulthood, seems to stymie a mitochondrial mishap that may contribute to muscle loss in aging adults, the researchers reported recently in the journal PLoS One.

In rats, the scientists found pockets of excess iron in muscle cell mitochondria, the tiny power plants found in every cell. The excess iron affects the chemistry inside the mitochondria, sparking the formation of harmful free radicals that can lead a mitochondrion straight to the emergency exit, said Christiaan Leeuwenburgh, Ph.D., a UF professor of aging in the UF College of Medicine and the Institute on Aging.

Leeuwenburgh was the senior author of the study and of a related report published online this month in Aging Cell that details the damage done by excess iron in mitochondria.

"We become less efficient at an old age and we need to understand why this is," Leeuwenburgh said. "One thing, maybe, is the accumulation of redox-active metals in cells. If the mitochondria become unhappy or are ready to kick the bucket, they have proteins in the inner and outer membranes that they can open up and commit suicide. They're tricky beasts."

The suicidal mitochondria can damage the rest of the muscle cell, leading to cell death and perhaps to muscle wasting, a big problem for adults as they reach their mid-70s, Leeuwenburgh added.

"Muscle is critical for your overall well-being," Leeuwenburgh said. "As you walk, muscle functions partly as a pump to keep your blood going. Muscle is an incredible source of reserves."

The researchers found increasing amounts of iron in the muscle cells of aging rats fed a typical unrestricted diet. The older the rats got, the more iron accumulated in the mitochondria and the more damage was done to its RNA and DNA. Rats of the same ages that were kept on a calorie-restricted diet — about 60 percent of the food typically ingested — seemed to maintain more normal iron levels in mitochondria, the researchers reported.

"The novel thing here is that iron is accumulating in places it does not normally accumulate," said Mitch Knutson, Ph.D., a UF assistant professor of food science and human nutrition and a study co-author. "Such iron accumulation in muscle was quite unexpected. This may be of concern because more people are genetically predisposed to developing iron overload than we originally thought."

The problem occurs when metals such as iron accumulate in the mitochondria and react with oxygen. Iron can change the chemical structure of oxygen, triggering its metamorphosis into a free radical, an unstable atom that can upset the delicate balance inside the mitochondria. The result? Leeuwenburgh describes it sort of like internal rust.

"Not all free radicals are harmful," Leeuwenburgh said. "To just use antioxidants to neutralize all free radicals is a huge misconception because some radicals are helpful. You just need to try and target very specific free radicals that form in specific parts of the body."

Researchers don't know exactly what causes iron to accumulate in mitochondria in aging animals, but a breakdown in how iron is transported through cells could be one reason why, Leeuwenburgh said. Understanding how caloric restriction limits the problem in rats could help researchers better understand how to combat it, he added.

Russell T. Hepple, Ph.D., an associate professor of kinesiology and medicine at the University of Calgary in Canada, said the findings are another step forward in linking iron to muscle cell death, but there are more questions researchers must answer.

"They've shown that apoptosis (cell death) goes up in aging muscle but where does that happen?" Hepple asked. "There are more than muscle cells in muscle. (For example) in older adults there are inflammatory cells."

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>