Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Custom-tailored strategy against glioblastomas

26.09.2016

Glioblastomas are incurable malignant brain tumors. Usually the patients affected survive for only a few months. In addition, every tumor is quite different, which makes treatment very difficult. Researchers at the University of Bonn have now developed a completely new method as the basis for creating custom-tailored, two-stage therapies. Using tumor samples from a patient, they do lab tests to determine which substances can first make the different types of cancer cells uniform and then effectively kill them. The study has already been published online and will soon appear in the print edition of the technical journal "Clinical Cancer Research".

Glioblastomas are among the most common and malignant of brain tumors. "The tumor cells characteristically display great variety", says Professor Dr. Björn Scheffler of the Institute of Reconstructive Neurobiology at the University of Bonn, who recently began doing research at the German Cancer Research Center in Heidelberg and is a Professor at the Essen University Hospital.


Looking through the microscope: The red dye is a special tumor marker; the skeleton of the in part gigantic tumor cells is shown in green; the cell nuclei in blue.

© Image: Roman Reinartz / Institute for Reconstructive Neurobiology of the University of Bonn

The cells in such a brain tumor can display very different characteristics, such as varying cell size or number of cell nuclei. Because the different cancer cells within a tumorous tissue also develop different modes of defense against therapeutic measures, the treatment of patients is extraordinarily difficult. After surgical removal, radiation, and chemotherapy, this type of tumor often returns; drugs are then usually no longer effective.

A team under Professor Scheffler, consisting of researchers from the Bonn University Hospital, the Life & Brain Center, The German Consortium for Translational Cancer Research, Tufts University Boston/Massachusetts, and other institutes in the USA, has now developed a new method that is expected to combat such complex brain tumors better. From tissue and cell samples from five glioblastoma patients, the scientists obtained 33 individual cancer cells capable of reproduction, which grew into very different tumors in the lab. For each patient, multiple representative test systems were thus available to study the different facets of a tumor representatively and individuallyseparately.

For each individual cancer cell, 180 active substances are tested

To find the best therapy for each one of these 33 tumor facets, the researchers tested about 180 different active substances. In doing so, the scientists made a surprising observation: "One and the same active ingredient caused most of the tumor facets to die", reports lead author Roman Reinartz of Professor Scheffler's Team. However, the cancer cells of individual other tumor facets of the same patient survived the treatment and were even able to reproduce much more intensively. "These initially resistant tumor facets could then be combated much more effectively with other active ingredients".

The different nature of the tumor cells requires the use of combined therapeutic measures. How many drugs were then needed to combat all the facets of a tumor effectively? "In the best case scenario two", explains Reinartz. Instead of using the combined chemotherapies simultaneously, as was previously the case, the researchers want to proceed step by step in the future. This is how the therapy of the future could look like:

In order to prevent the further spread of the tumor in the brain, parts will be removed surgically, as is the current procedure. In the future, the tissue samples obtained could be subjected to lab tests, in order to catalogue the response behavior of the various tumor facets. For each patient, the suitable combination treatment could then be designed, which, in the first step, would turn the variety of different tumor cells into a mass of cancer cells of the same type. In the second step, the precise substance would be found selected from the catalog that would be the most effective weapon against the specially particularly enriched tumor facet.

Scientists bring order to chaos

Until now, the differences in the types of cancer cells in a glioblastoma have prevented successful treatment, because some of the resistant tumor facets might reproduce more intensively under the chemotherapy. With their method, the scientists are creating order from this seeming chaos. Professor Scheffler provides a comparison for the procedure: "Like a car that is disassembled into its individual parts to check for damage, we examine the different cancer cells". Once the characteristics of the cells of the tumor are known, this knowledge can be used to steer the complex system in the right direction.

With funding from the Lichtenberg Program of the Volkswagen Foundation, the researchers under Professor Scheffler at the University of Bonn have spent about eight years studying the characteristics and mechanisms of glioblastomas. "Our strategy can be expected to improve therapeutic chances substantially in the future, because this route makes it possible for us to make very precise predictions for the custom-tailored treatment of patients", says Professor Scheffler. The researchers have already carried out this step successfully in mice. In order to make the therapy available to people as well, further research will be necessary.

Publication: Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma, Journal "Clinical Cancer Research", DOI: 10.1158/1078-0432.CCR-15-2089

Contact for the media:

Prof. Dr. Björn Scheffler
Institute for Reconstructive Neurobiology
Life & Brain / University of Bonn
Tel. ++49-228-6885473
E-Mail: bscheffler@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>