Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curcumin may protect premature infants' lungs

03.07.2013
LA BioMed research finds substance in turmeric provides lasting protection

Turmeric, a key ingredient in spicy curry dishes, has long been known to have medicinal values. Now new research finds a substance in turmeric, curcumin, may provide lasting protection against potentially deadly lung damage in premature infants.

Premature infants often need the assistance of ventilators and forced oxygen therapy because they're frequently born with inadequate lung function. These therapies can cause the infants to suffer lasting lung damage and even death. Researchers at Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (LA BioMed), using disease models, found curcumin provided long-term protection against this damage.

Their study, published online by the American Journal of Physiology, Lung Cellular and Molecular Physiology, found curcumin provided protection against bronchopulmonary dysplasia (BDP), a condition characterized by scarring and inflammation, and against hyperoxia, in which too much oxygen enters the body through the lungs, for up to 21 days after birth. A previous LA BioMed study found curcumin provided protection for up to seven days after birth.

"This is the first study to find long-term benefits of using curcumin to protect lung function in premature infants," said Virender K. Rehan, MD, the LA BioMed lead researcher who authored the study. "Curcumin is known to have potent antioxidant, anti-inflammatory and anti-microbial properties, making it a promising therapy for premature infants who require oxygen therapy after birth."

BDP is now the most common chronic lung disease of infancy in the U.S. With more premature babies surviving because of improvements in neonatal care, the cases of BPD have increased. A 2010 study found 67.3% of babies born at 22-25 weeks of gestation developed BPD, compared to 36.6% of infants born at 26-30 weeks of gestation.

To see the study, please visit:

http://ajplung.physiology.org/content/early/2013/06/24/
ajplung.00082.2013.abstract
About LA BioMed
Founded in 1952, LA BioMed is one of the country's leading nonprofit independent biomedical research institutes. It has approximately 100 principal researchers conducting studies into improved treatments and cures for cancer, inherited diseases, infectious diseases, illnesses caused by environmental factors and more. It also educates young scientists and provides community services, including prenatal counseling and childhood nutrition programs. LA BioMed is academically affiliated with the David Geffen School of Medicine at UCLA and located on the campus of Harbor-UCLA Medical Center. For more information, please visit http://www.LABioMed.org.

Laura Mecoy | EurekAlert!
Further information:
http://www.labiomed.org

Further reports about: BioMed Medical Wellness lung damage lung function premature infants

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>