Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Culprit found for increased stroke injury with diabetes

24.01.2011
Finding may lead the way toward treatments that minimize adverse outcomes

Strokes are a leading cause of mortality and adult disability. Those that involve intracerebral hemorrhage (bleeding in the brain) are especially deadly, and there are no effective treatments to control such bleeding.

Moreover, diabetes and hyperglycemia (high blood glucose levels) are associated with increases in bleeding during hemorrhagic stroke and worse clinical outcomes.

But Joslin Diabetes Center researchers now have identified one key player that contributes to this increased bleeding, a discovery that may pave the way toward treatments that minimize adverse stroke outcomes both for people with pre-existing diabetes and those with hyperglycemia identified at the time of stroke.

Studies in the lab of Joslin Investigator Edward Feener, Ph.D., pinpointed a new mechanism involving a protein called plasma kallikrein that interferes with the normal clotting process in the brain following blood vessel injury with diabetes. Their work is reported online in the journal Nature Medicine.

The scientists began by injecting a small amount of blood into the brains of rats with diabetes and of control animals without diabetes. The difference was dramatic—the diabetic animals bled over a much greater area of the brain.

Work in the Feener lab had previously implicated plasma kallikrein in diabetic eye complications. When the experimenters pre-treated the diabetic animals with a molecule that inhibits the protein's effects, brain damage from the blood injections dropped to levels similar to that in the control animals. Conversely, when pure plasma kallikrein was injected into the brain, it produced little impact on the control animals but rapidly increased major bleeding in the animals with diabetes.

Further studies by the Joslin researchers showed that normalizing blood glucose levels in diabetic animals could block the effect from plasma kallikrein, and that rapidly inducing hyperglycemia in control animals mimicked the effects of diabetes on brain hemorrhage. This suggests that high blood sugar at the time of brain hemorrhage, rather than diabetes per se, is responsible for the increased bleeding.

"Given the prevalence of strokes and the damage they inflict, these findings are exciting because they suggest the possibility that rapid control of blood sugar levels may provide an opportunity to reduce intracerebral hemorrhage, which is a clinical situation that has very limited treatment options," says Dr. Feener, who is also an associate professor of medicine at Harvard Medical School. "This work could have broad implications since about half of patients with acute hemorrhagic stroke have hyperglycemia, whether or not they have pre-existing diabetes."

The work also raises the possibility of developing drugs that target plasma kallikrein and may provide protective measures in people with diabetes or others at high risk for stroke. Such drugs might also prove useful for patients suffering from the more common ischemic strokes, which usually begin as blocked vessels in the brain but can transform into hemorrhages.

Surprisingly, while plasma kallikrein has been studied for decades, the Joslin scientists found that the protein boosts brain bleeding through a previously unknown mechanism—by blocking platelet activation near damaged blood vessels.

Joslin's Jia Liu and Ben-Bo Gao were co-lead authors on the Nature Medicine paper. Other contributors include Joslin's Allen Clermont, and Price Blair and Robert Flaumenhaft of Beth Israel Deaconess Medical Center, and Tamie Chilcote and Sukanto Sinha of ActiveSite Pharmaceuticals. Lead funding came from the National Institutes of Health and the American Heart Association.

Eric Bender | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>