Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Culprit found for increased stroke injury with diabetes

24.01.2011
Finding may lead the way toward treatments that minimize adverse outcomes

Strokes are a leading cause of mortality and adult disability. Those that involve intracerebral hemorrhage (bleeding in the brain) are especially deadly, and there are no effective treatments to control such bleeding.

Moreover, diabetes and hyperglycemia (high blood glucose levels) are associated with increases in bleeding during hemorrhagic stroke and worse clinical outcomes.

But Joslin Diabetes Center researchers now have identified one key player that contributes to this increased bleeding, a discovery that may pave the way toward treatments that minimize adverse stroke outcomes both for people with pre-existing diabetes and those with hyperglycemia identified at the time of stroke.

Studies in the lab of Joslin Investigator Edward Feener, Ph.D., pinpointed a new mechanism involving a protein called plasma kallikrein that interferes with the normal clotting process in the brain following blood vessel injury with diabetes. Their work is reported online in the journal Nature Medicine.

The scientists began by injecting a small amount of blood into the brains of rats with diabetes and of control animals without diabetes. The difference was dramatic—the diabetic animals bled over a much greater area of the brain.

Work in the Feener lab had previously implicated plasma kallikrein in diabetic eye complications. When the experimenters pre-treated the diabetic animals with a molecule that inhibits the protein's effects, brain damage from the blood injections dropped to levels similar to that in the control animals. Conversely, when pure plasma kallikrein was injected into the brain, it produced little impact on the control animals but rapidly increased major bleeding in the animals with diabetes.

Further studies by the Joslin researchers showed that normalizing blood glucose levels in diabetic animals could block the effect from plasma kallikrein, and that rapidly inducing hyperglycemia in control animals mimicked the effects of diabetes on brain hemorrhage. This suggests that high blood sugar at the time of brain hemorrhage, rather than diabetes per se, is responsible for the increased bleeding.

"Given the prevalence of strokes and the damage they inflict, these findings are exciting because they suggest the possibility that rapid control of blood sugar levels may provide an opportunity to reduce intracerebral hemorrhage, which is a clinical situation that has very limited treatment options," says Dr. Feener, who is also an associate professor of medicine at Harvard Medical School. "This work could have broad implications since about half of patients with acute hemorrhagic stroke have hyperglycemia, whether or not they have pre-existing diabetes."

The work also raises the possibility of developing drugs that target plasma kallikrein and may provide protective measures in people with diabetes or others at high risk for stroke. Such drugs might also prove useful for patients suffering from the more common ischemic strokes, which usually begin as blocked vessels in the brain but can transform into hemorrhages.

Surprisingly, while plasma kallikrein has been studied for decades, the Joslin scientists found that the protein boosts brain bleeding through a previously unknown mechanism—by blocking platelet activation near damaged blood vessels.

Joslin's Jia Liu and Ben-Bo Gao were co-lead authors on the Nature Medicine paper. Other contributors include Joslin's Allen Clermont, and Price Blair and Robert Flaumenhaft of Beth Israel Deaconess Medical Center, and Tamie Chilcote and Sukanto Sinha of ActiveSite Pharmaceuticals. Lead funding came from the National Institutes of Health and the American Heart Association.

Eric Bender | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>