Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crucial step in AIDS virus maturation simulated for first time

04.12.2012
Using computational techniques, researchers have shown how a protein responsible for the maturation of the virus releases itself to initiate infection

Bioinformaticians at IMIM (Hospital del Mar Medical Research Institute) and UPF (Pompeu Fabra University) have used molecular simulation techniques to explain a specific step in the maturation of the HIV virions, i.e., how newly formed inert virus particles become infectious, which is essential in understanding how the virus replicates. These results, which have been published in the latest edition of PNAS, could be crucial to the design of future antiretrovirals.

HIV virions mature and become infectious as a result of the action of a protein called HIV protease. This protein acts like a pair of scissors, cutting the long chain of connected proteins that form HIV into individual proteins that will form the infectious structure of new virions. According to the researchers of the IMIM-UPF computational biophysics group, "One of the most intriguing aspects of the whole HIV maturation process is how free HIV protease, i.e. the 'scissors protein,' appears for the first time, since it is also initially part of the long poly-protein chains that make up new HIV virions."

Using ACEMD a software for molecular simulations and a technology known as GPUGRID.net, Gianni De Fabritiis' group has demonstrated that the first "scissors proteins" can cut themselves out from within the middle of these poly-protein chains. They do this by binding one of their connected ends (the N-terminus) to their own active site and then cutting the chemical bond that connects them to the rest of the chain. This is the initial step of the whole HIV maturation process. If the HIV protease can be stopped during the maturation process, it will prevent viral particles, or virions, from reaching maturity and, therefore, from becoming infectious.

This work was performed using GPUGRID.net, a voluntary distributed computing platform that harnesses the processing power of thousands of NVIDIA GPU accelerators from household computers made available by the public for research purposes. It's akin to accessing a virtual supercomputer. One of the benefits of GPU acceleration is that it provides computing power that is around 10 times higher than that generated by computers based on CPUs alone. It reduces research costs accordingly by providing a level computational power that previously was only available on dedicated, multi-million dollar supercomputers.

Researchers use this computing power to process large numbers of data and generate highly complex molecular simulations. In this specific case, thousands of computer simulations have been carried out, each for hundreds of nanoseconds (billionths of a second) for a total of almost a millisecond.

According to researchers, this discovery in the HIV maturation process provides an alternative approach in the design of future pharmaceutical products based on the use of these new molecular mechanisms. For now, this work provides a greater understanding of a crucial step in the life cycle of HIV, a virus that directly attacks and weakens the human immune system, making it vulnerable to a wide range of infections, and which affects millions of people around the world.


Reference:
"Kinetic characterization of the critical step in HIV-1 protease maturation". S Kashif Sadiq, Frank Noe and Gianni De Fabritiis. PNAS. DOI:10.1073/pnas.1210983109. http://www.pnas.org/content/early/2012/11/21/1210983109.abstract?sid=9e8d7340-4d4c-4fa5-85a2-c68194eff067

Marta Calsina | EurekAlert!
Further information:
http://www.imim.es

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>