Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crucial step in AIDS virus maturation simulated for first time

04.12.2012
Using computational techniques, researchers have shown how a protein responsible for the maturation of the virus releases itself to initiate infection

Bioinformaticians at IMIM (Hospital del Mar Medical Research Institute) and UPF (Pompeu Fabra University) have used molecular simulation techniques to explain a specific step in the maturation of the HIV virions, i.e., how newly formed inert virus particles become infectious, which is essential in understanding how the virus replicates. These results, which have been published in the latest edition of PNAS, could be crucial to the design of future antiretrovirals.

HIV virions mature and become infectious as a result of the action of a protein called HIV protease. This protein acts like a pair of scissors, cutting the long chain of connected proteins that form HIV into individual proteins that will form the infectious structure of new virions. According to the researchers of the IMIM-UPF computational biophysics group, "One of the most intriguing aspects of the whole HIV maturation process is how free HIV protease, i.e. the 'scissors protein,' appears for the first time, since it is also initially part of the long poly-protein chains that make up new HIV virions."

Using ACEMD a software for molecular simulations and a technology known as GPUGRID.net, Gianni De Fabritiis' group has demonstrated that the first "scissors proteins" can cut themselves out from within the middle of these poly-protein chains. They do this by binding one of their connected ends (the N-terminus) to their own active site and then cutting the chemical bond that connects them to the rest of the chain. This is the initial step of the whole HIV maturation process. If the HIV protease can be stopped during the maturation process, it will prevent viral particles, or virions, from reaching maturity and, therefore, from becoming infectious.

This work was performed using GPUGRID.net, a voluntary distributed computing platform that harnesses the processing power of thousands of NVIDIA GPU accelerators from household computers made available by the public for research purposes. It's akin to accessing a virtual supercomputer. One of the benefits of GPU acceleration is that it provides computing power that is around 10 times higher than that generated by computers based on CPUs alone. It reduces research costs accordingly by providing a level computational power that previously was only available on dedicated, multi-million dollar supercomputers.

Researchers use this computing power to process large numbers of data and generate highly complex molecular simulations. In this specific case, thousands of computer simulations have been carried out, each for hundreds of nanoseconds (billionths of a second) for a total of almost a millisecond.

According to researchers, this discovery in the HIV maturation process provides an alternative approach in the design of future pharmaceutical products based on the use of these new molecular mechanisms. For now, this work provides a greater understanding of a crucial step in the life cycle of HIV, a virus that directly attacks and weakens the human immune system, making it vulnerable to a wide range of infections, and which affects millions of people around the world.


Reference:
"Kinetic characterization of the critical step in HIV-1 protease maturation". S Kashif Sadiq, Frank Noe and Gianni De Fabritiis. PNAS. DOI:10.1073/pnas.1210983109. http://www.pnas.org/content/early/2012/11/21/1210983109.abstract?sid=9e8d7340-4d4c-4fa5-85a2-c68194eff067

Marta Calsina | EurekAlert!
Further information:
http://www.imim.es

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>