Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less couch time equals fewer cookies

29.05.2012
Just 2 simple changes in health behavior spurs big and lasting results

Simply ejecting your rear from the couch means your hand will spend less time digging into a bag of chocolate chip cookies.

That is the simple but profound finding of a new Northwestern Medicine study, which reports simply changing one bad habit has a domino effect on others. Knock down your sedentary leisure time and you'll reduce junk food and saturated fats because you're no longer glued to the TV and noshing. It's a two-for-one benefit because the behaviors are closely related.

The study also found the most effective way to rehab a delinquent lifestyle requires two key behavior changes: cutting time spent in front of a TV or computer screen and eating more fruits and vegetables.

"Just making two lifestyle changes has a big overall effect and people don't get overwhelmed," said Bonnie Spring, a professor of preventive medicine at Northwestern University Feinberg School of Medicine, and lead author of the study published in Archives of Internal Medicine.

"Americans have all these unhealthy behaviors that put them at high risk for heart disease and cancer, but it is hard for them and their doctors to know where to begin to change those unhealthy habits," Spring said. "This approach simplifies it."

With this simplified strategy, people are capable of making big lifestyle changes in a short period of time and maintaining them, according to the study.

Spring wanted to figure out the most effective way to spur people to change common bad health habits: eating too much saturated fat and not enough fruits and vegetables, spending too much sedentary leisure time and not getting enough physical activity.

She and colleagues randomly assigned 204 adult patients, ages 21 to 60 years old, with all those unhealthy habits into one of four treatments. The treatments were: increase fruit/vegetable intake and physical activity, decrease fat and sedentary leisure, decrease fat and increase physical activity, and increase fruit/vegetable intake and decrease sedentary leisure.

During the three weeks of treatment, patients entered their daily data into a personal digital assistant and uploaded it to a coach who communicated as needed by telephone or email.

Participants could earn $175 for meeting goals during the three-week treatment phase. But when that phase was completed, patients no longer had to maintain the lifestyle changes in order to be paid. They were simply asked to send data three days a month for six months and received $30 to $80 per month.

"We said we hope you'll continue to keep up these healthy changes, but you no longer have to keep them up to be compensated," Spring said.

The results over the next six months amazed Spring. "We thought they'd do it while we were paying them, but the minute we stopped they'd go back to their bad habits," she said. "But they continued to maintain a large improvement in their health behaviors."

From baseline to the end of treatment to the end of the six-month follow-up, the average servings of fruit/vegetables changed from 1.2 to 5.5 to 2.9; average minutes per day of sedentary leisure went from 219.2 to 89.3 to 125.7 and daily calories from saturated fat from 12 percent to 9.4 percent to 9.9 percent.

About 86 percent of participants said once they made the change, they tried to maintain it. There was something about increasing fruits and vegetables that made them feel like they were capable of any of these changes," Spring said. "It really enhanced their confidence."

"We found people can make very large changes in a very short amount of time and maintain them pretty darn well," Spring said. "It's a lot more feasible than we thought."

Other Northwestern authors included Donald Lloyd-Jones, M.D. Arlen Moller and Juned Siddique.

The research is supported by the following National Institutes of Health grants: National Institute of Heart, Lung and Blood grant HL075451, for Multiple Behavior Change in Diet and Activity; the Robert H. Lurie Comprehensive Cancer Center of Northwestern University grant from the National Institute of Mental Health P30 CA060553; the National Institute of Mental Health grant F31 MH070107.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>