Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COPD increases risk of developing cerebral microbleeds

19.07.2013
Chronic obstructive pulmonary disease (COPD) is associated with an increased risk of developing cerebral microbleeds, according to a new study from researchers in the Netherlands. Cerebral microbleeds are a marker of cerebral small vessel disease, an important cause of age-related disability and cognitive decline.

"The connection between COPD and cerebral small vessel disease was suggested by two earlier studies, but the connection between COPD and cerebral microbleeds, the location of which can help elucidate underlying disease mechanisms, has not been studied," said researchers Lies Lahousse, PhD, of the Department of Respiratory Medicine at Ghent University Hospital in Belgium and Bruno Stricker, PhD, of the Department of Epidemiology at Erasmus Medical Center in Rotterdam, the Netherlands.

"In the current study, we found, for the first time, that COPD increases the risk of cerebral microbleeds in deep or infratentorial brain regions, not only in a cross-sectional analysis but also in a longitudinal analysis in subjects without microbleeds at baseline."

Microbleeds in deep (deep gray matter of the basal ganglia and thalamus and white matter of the corpus callosum, internal, external, and extreme capsule) or infratentorial (brainstem and cerebellum) locations are suggestive of hypertensive or arteriosclerotic disease in the small blood vessels. The prevalence of large vessel disease is known to be increased in COPD, and these new results "indicate that COPD might affect both large and small vessels," said Dr. Lahousse.

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

The study included 165 subjects with COPD and 645 subjects with normal lung function from the Rotterdam study, a prospective population-based cohort study in subjects ¡Ý55 years. COPD diagnoses were confirmed by spirometry and cerebral microbleeds were detected with high-resolution MRI.

Compared with subjects with normal lung function, COPD patients had a significantly higher prevalence of cerebral microbleeds, which was independent of age, sex, smoking status, atherosclerotic large vessel disease, antithrombotic use, total cholesterol, triglycerides, and serum creatinin levels. The prevalence of microbleeds in deep or infratentorial locations was also significantly increased in COPD patients and the prevalence of these microbleeds increased with increasing severity of airflow limitation.

In a longitudinal analysis restricted to subjects without microbleed at baseline, COPD independently predicted incident cerebral microbleeds in deep or infratentorial locations.

The study had some limitations, including the cross-sectional design of the main analysis and the association of COPD with multiple comorbidities, some of which may affect cerebral small vessel disease.

"We have shown that COPD is associated with an increased risk of developing cerebral microbleeds in deep or infratentorial locations," said Dr. Lahousse. "Given the potential cognitive and functional consequences of these microbleeds, preventive strategies for vulnerable patients need to be developed."

About the American Journal of Respiratory and Critical Care Medicine:

With an impact factor of 11.080, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Nathaniel Dunford | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>