Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Controlling key enzyme in brain offers clue for future obesity treatment

The Sirt1 enzyme in the body has generated enormous attention as a possible secret to living longer. Some scientists believe that fasting and drinking wine appear to aid in this quest because both likely activate Sirt1, unleashing its power.

But researchers from Brown University, Rhode Island Hospital and the University of Texas Southwestern Medical Center have discovered that Sirt1 in the brain has its own potential health benefit: It may keep people thinner.

They determined that inhibiting the activity of Sirt1 in the brain's hypothalamic region appears to help control food intake — a finding that potentially lays the groundwork for new treatments for obesity. Details will be published online Dec. 15, 2009, at PLoS ONE.

The discovery is the culmination of the first in-depth study of the metabolic role of Sirt1 in the brain. It suggests that Sirt1 behaves differently in the brain than in organs such as the liver and pancreas, where the enzyme has been more commonly studied.

Sirt1 research so far has posited that fasting activates Sirt1 and thereby helps extend life. Drug companies and scientists have also thrown their support behind resveratrol, a compound found in red wine, thought to be beneficial to the body because it may activate Sirt1. The new Brown research challenges at least some of the preexisting findings, because scientists found that inhibiting the activity of Sirt1 in the brains of rats, rather than stimulating it, appeared to reduce appetite, leading to a smaller weight gain compared to untreated animals. They believe a similar mechanism exists in human brains.

"It's still controversial whether calorie restriction or resveratrol are Sirt1 stimulators," said Eduardo Nillni, the study's lead author. Nillni is professor of medicine (research) at the Warren Alpert Medical School of Brown University and a member of the Department of Molecular Biology, Cell Biology and Biochemistry. At Rhode Island Hospital, Nillni is senior investigator in the Division of Endocrinology. Other authors include researchers from Brown and the University of Texas Southwestern Medical Center.

Nillni's team did find that fasting helped increase Sirt1 production and activity in the brain, consistent with the view that reducing food intake stimulates Sirt1 elsewhere in the body. But they generated clear data showing that pharmacologically or genetically inhibiting Sirt1 activity in the brain led to the animals eating less food and gaining fewer pounds compared to their untreated counterparts.

The study also indentified specific brain receptors or sites where Sirt1 induced food intake — the melanocortin receptors.

Nillni said that more work should be done to investigate whether or how the brain pathways involving Sirt1 and food intake are affected in obese animals.

The National Institutes of Health funded the study.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Mark Hollmer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>