Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlled and targeted release of drugs

24.01.2013
Nanomedicine
Researchers have discovered a method that allows for the controlled release of an active agent on the basis of a magnetic nanovehicle. The research, conducted as part of the National Research Programme "Smart Materials" (NRP 62), opens up new possibilities for the develop-ment of targeted treatments, which are more efficient and trigger fewer side effects.

Certain drugs are toxic by nature. For example, anti-cancer drugs developed to kill diseased cells also harm healthy ones. To limit the side effects of chemotherapy, it would be a great step forward if it were possible to release a drug only in the affected area of the body. In the context of the National Research Programme "Smart Materials" (NRP 62) - a cooperation between the SNSF and the Commission for Technology and Innovation (CTI) - researchers of ETH Lausanne, the Adolphe Merkle Institute and the University Hospital of Geneva have discovered a method that might represent an important step towards the development of an intelligent drug of this kind. By combining their expert knowledge in the areas of material sciences, biological nanomaterials and medicine, they were able to prove the feasibility of using a nanovehicle to transport drugs and release them in a controlled manner.

This nanocontainer is a liposome, which takes the shape of a vesicle. It has a diameter of 100 to 200 nanometers and is 100 times smaller than a human cell. The membrane of the vesicle is composed of phospholipids and the inside of the vesicle offers room for the drug. On the surface of the liposome, specific molecules help to target malignant cells and to hide the nanocontainer from the immune system, which might otherwise consider it a foreign entity and seek to destroy it. Now the researchers only needed to discover a mechanism to open up the membrane at will.

Nano effect
This is exactly what the researchers succeeded in doing (*). How they did it? By integrating into the liposome membrane superparamagnetic iron oxide nanoparticles (SPION), which only become magnetic in the presence of an external magnetic field. Once they are in the field, the SPION heat up. The heat makes the membrane permeable and the drug is released. Researchers proved the feasibility of such a nanovehicle by releasing in a controlled manner a coloured substance contained in the liposomes. "We can really talk of nanomedicine in this context because, by exploiting superparamagnetism, we are exploiting a quantum effect which only exists at the level of nanoparticles," explains Heinrich Hofmann of the Powder Technology Laboratory of EPFL. SPION are also an excellent contrast agent in magnetic resonance imaging (MRI). A simple MRI shows the location of the SPION and allows for the release of the drug once it has reached the targeted spot.

Designed for medical practice
"To maximise the chances of discovering an effective treatment, we focused on nanocontainers, which would be readily accepted by doctors," adds Heinrich Hofmann. This strategy limits the range of possibilities. Liposomes, which are already used in a number of drugs on the market, are composed of natural phospholipids which can also be found in the membranes of human cells. To open them up, researchers focused on SPION, which had already been the subject of numerous toxicological studies. More efficient materials were ignored because little or nothing was known about their effects on humans. In terms of shape, another important parameter of magnetism, they chose to use only spherical nanoparticles, which are considered safer than fibrous shapes. The intensity and frequency of the magnetic field needed to release the active agent are compatible with human physiology.
The combination of these parameters presented the researchers with another challenge: to reach a temperature sufficiently high to open up the liposomes, they were forced to increase the size of the SPION from 6 to 15 nanometres. The membrane of the vesicles has a thickness of only 4-5 nanometres. Then the masterstroke: the research group of Alke Fink at the Adolphe Merkle Institute was able to regroup the SPION in one part of the membrane (*). This also made MRI detection easier. Before starting in-vivo tests, the researchers aim to study the integration of SPION into the liposome membrane in greater detail.

National Research Programme "Smart Materials" (NRP 62)
NRP 62 is a cooperation programme between the Swiss National Science Foundation (SNSF) and the Commission for Technology and Innovation (CTI). It strives to promote scientific excellence and contribute to the successful industrial exploitation of smart materials and their applications. NRP 62 intends to combine the expertise and resources of various research institutions across Switzerland. The researchers will devise the technologies needed for the development of smart materials and for their application in intelligent systems and structures. NRP 62 consists of 21 projects of use-inspired fundamental research. It has a budget of CHF 11 million and ends in 2015.

(*)Bonnaud Cécile, Vanhecke Dimitri, Demurtas, Davide, Rothen-Rutishauser Barbara and Fink Alke (2013). Spatial SPION localization in liposome membranes. IEEE Transaction on Magnetics : doi 10.1109/TMAG.2012.2219040
(available as a PDF from the SNSF; e-mail: com@snf.ch)

Contact
Prof. Heinrich Hofmann
Laboratoire de technologie des poudres
Ecole polytechnique fédérale de Lausanne
CH-1015 Ecublens
Phone: +41 21 693 36 07
E-mail: heinrich.hofmann@epfl.ch

Prof. Alke Fink
Institut Adolphe Merkle
Université de Fribourg
Rte de l'Ancienne Papeterie
CH-1723 Marly
Phone: +41 26 300 95 01
E-mail: alke.fink@unifr.ch

Communication division | idw
Further information:
http://www.snsf.ch

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>