Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Control of blood vessels a possible weapon against obesity

Mice exposed to low temperatures develop more blood vessels in their adipose tissue and metabolise body fat more quickly, according to a new study from Karolinska Institutet. Scientists now hope to learn how to control blood vessel development in humans in order to combat obesity and diabetes.

The growth of fat cells and their metabolism depend on oxygen and blood-borne nutrients. A possible way to regulate the amount of body fat – in order, for instance, to combat obesity – can therefore be to affect the development of blood vessels in the adipose tissue.

A team of researchers at Karolinska Institutet have now demonstrated the rapid development of blood vessels in the adipose tissue of mice exposed to low temperatures. This is followed in its turn by a transformation of the adipose tissue from ‘white’ fat to ‘brown’ fat, which has higher metabolic activity and which breaks down more quickly.

“This is the first time it’s been shown that blood vessel growth affects the metabolic activity of adipose tissue rather than vice versa,” says Professor Yihai Cao, who led the study. “If we can learn how to regulate the development of blood vessels in humans, we’d open up new therapeutic avenues for obesity and metabolic diseases like diabetes.”

Brown fat releases heat when it breaks down, and is mainly found in hibernating animals. In humans, it is found in newborn babies, but scientists believe by controlling blood vessel development that it might be possible to transform white fat to brown fat in adults as well.

Publication: “Cold triggers VEGF-dependent but hypoxia-independent angiogenesis in adipose tissues and anti-VEGF agents modulate adipose tissue metabolism”,

Yuan Xue, Natasa Petrovic, Renhai Cao, Ola Larsson, Sharon Lim, Shaohua Chen, Helena M Feldmann, Zicai Liang, Zhengping Zhu, Jan Nedergaard, Barbara Cannon, Yihai Cao, Cell Metabolism, 6 January 2009.

Katarina Sternudd | alfa
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>