Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Contradictory Findings about the Effect of the Full Moon on Sleep

08.07.2014

According to folklore, the full moon affects human sleep. International researchers are trying to determine whether there is any truth to the belief. Studies by a team at The University of Gothenburg in Sweden have found that people actually sleep 20 minutes less when the moon is full.

A Swiss research study conducted last year showed that the full moon affects sleep. The findings demonstrated that people average 20 minutes less sleep, take five minutes longer to fall asleep and experience 30 minutes more of REM sleep, during which most dreaming is believed to occur.

Different outcome
Numerous studies through the years have attempted to prove or disprove the hypothesis that lunar phases affect human sleep. But results have been hard to repeat. A group of researchers at the famed Max Planck Institute and elsewhere analyzed data from more than 1,000 people and 26,000 nights of sleep, only to find no correlation.

International researchers are being urged to publish their results in hopes of getting to the bottom of the question. Michael Smith and his co-researchers at Sahlgrenska Academy have analyzed data generated by a previous sleep study and compared them with the lunar cycle.

... more about:
»Biology »Moon »cerebral »cortical »dreaming »lunar »reactivity »sleep

20 minutes less sleep
Based on a study of 47 healthy 18-30 year-olds and published in Current Biology, the results support the theory that a correlation exists.

“Our study generated findings similar to the Swiss project,” Michael Smith says.

“Subjects slept an average of 20 minutes less and had more trouble falling asleep during the full moon phase. However, the greatest impact on REM sleep appeared to be during the new moon.”

More susceptible brain
The retrospective study by the Gothenburg researchers suggests that the brain is more susceptible to external disturbances when the moon is full.

“The purpose of our original study was to examine the way that noise disturbs sleep,” Mr. Smith continues. “Re-analysis of our data showed that sensitivity, measured as reactivity of the cerebral cortex, is greatest during the full moon.”

Greater cortical reactivity was found in both women and men, whereas only men had more trouble falling asleep and slept less when the moon was full. Skeptics warn that both age and gender differences may be a source of error, not to mention more subtle factors such as physical condition and exposure to light during the day.

Need for more studies
Though fully aware of the issues, Mr. Smith is not prepared to dismiss the results of the Gothenburg study.

“The rooms in our sleep laboratories do not have any windows,” he says. “So the effect we found cannot be attributable to increased nocturnal light during full moon. Thus, there may be a built-in biological clock that is affected by the moon, similar to the one that regulates the circadian rhythm. But all this is mere speculation – additionally, more highly controlled studies that target these mechanisms are needed before more definitive conclusions can be drawn.”

The article Human sleep and cortical reactivity are influenced by lunar phase is published in Current Biology.

Contact
Michael G. Smith, Researcher at the Sahlgrenska Academy, University of Gothenburg
Phone: +46 31 786 3158, e-mail: michael.smith@amm.gu.se

Weitere Informationen:

http://www.gu.se/english/about_the_university/news-calendar/News_detail/?languag...

Ulrika Lundin | idw - Informationsdienst Wissenschaft

Further reports about: Biology Moon cerebral cortical dreaming lunar reactivity sleep

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>