Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consortium of scientists maps the human body's bacterial ecosystem

14.06.2012
Gladstone investigators play key part in a national consortium of researchers

Scientists at the Gladstone Institutes today are announcing their role in an unprecedented collaboration organized by the National Institutes of Health, which used groundbreaking methods to vastly improve our understanding of bacteria that reside in and on the human body.

In a series of coordinated scientific reports, some 200 members of the Human Microbiome Project (HMP) Consortium from nearly 80 research institutions used advanced DNA-sequencing techniques to identify the thousands of microorganisms that live on humans. Researchers believe this will deepen our understanding of how microorganisms live in harmony with their human hosts.

"The vast array of microorganisms—which include many species of bacteria or viruses—that dwell in or on humans together comprise an ecosystem, or 'microbiome'," said Gladstone Associate Investigator Katherine Pollard, PhD, whose findings—available online in PLoS ONE—focused on microbes living in the human gut. "Alongside my fellow HMP researchers, we used cutting-edge data-analysis tools to find out not only how this microbiome maintains human health, but also how changes in this ecosystem could contribute to disease."

Historically, doctors studied microbes by isolating them from a single patient sample and growing them in a culture. This painstaking process identified only a few species at a time, and was often inaccurate. The HMP researchers instead purified all human and microbial DNA from each of the more than 5,000 samples collected from various body sites of 242 healthy U.S. volunteers, running them through advanced DNA sequencers. Using data-analysis tools recently developed by Gladstone researchers and their colleagues, consortium members then used specific DNA signatures to identify individual microbes. Focusing on this so-called "microbial signature" helped researchers such as Dr. Pollard pinpoint individual species that had never before been characterized—and extrapolate the roles the species play in human health.

The results have proven to be a treasure-trove of new data. Where researchers had previously isolated only a few hundred microbial species that live on humans, researchers now calculate that more than 10,000 species make up the human microbiome.

"We have defined the boundaries of normal microbial variation in humans," said James M. Anderson, MD, PhD, director of the NIH Division of Program Coordination, Planning and Strategic Initiatives. "We now have a very good idea of what is normal for a healthy Western population and are beginning to learn how changes in the microbiome correlate with physiology and disease."

In Dr. Pollard's analysis, she and her colleagues found three types of gut bacteria never before seen by researchers. And given that samples all came from one population, there is hope that casting a wider net to include samples from around the world could help scientists paint a picture of how microbiomes differ across populations—and how those differences could influence disease.

"Preliminary research has shown that microbes in the guts of obese individuals more efficiently extract energy from fat than that of non-obese individuals—and could play a role the development of the disease," said Dr. Pollard, who is also an associate professor at the University of California, San Francisco, with which Gladstone is affiliated. "As we expand our dataset to include global populations, we can gain new insight into how microbes may be implicated not only in obesity, but in a whole host of disorders—including Type I diabetes, inflammatory bowel disease and many neurological conditions."

Dr. Pollard's research was performed in collaboration with George Weinstock, PhD, and his team at Washington University in St. Louis. Other scientists who participated in this research at Gladstone include Rebecca Truty, PhD, and Thomas Sharpton, PhD. Funding came from the San Simeon Fund, the Gordon and Betty Moore Foundation and the National Science Foundation.

About the National Institutes of Health

NIH, the nation's medical research agency, includes 27 institutes and centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical and translational medical research, and is investigating the causes, treatments and cures for both common and rare diseases.
About the Gladstone Institutes

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>