Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consortium of scientists maps the human body's bacterial ecosystem

14.06.2012
Gladstone investigators play key part in a national consortium of researchers

Scientists at the Gladstone Institutes today are announcing their role in an unprecedented collaboration organized by the National Institutes of Health, which used groundbreaking methods to vastly improve our understanding of bacteria that reside in and on the human body.

In a series of coordinated scientific reports, some 200 members of the Human Microbiome Project (HMP) Consortium from nearly 80 research institutions used advanced DNA-sequencing techniques to identify the thousands of microorganisms that live on humans. Researchers believe this will deepen our understanding of how microorganisms live in harmony with their human hosts.

"The vast array of microorganisms—which include many species of bacteria or viruses—that dwell in or on humans together comprise an ecosystem, or 'microbiome'," said Gladstone Associate Investigator Katherine Pollard, PhD, whose findings—available online in PLoS ONE—focused on microbes living in the human gut. "Alongside my fellow HMP researchers, we used cutting-edge data-analysis tools to find out not only how this microbiome maintains human health, but also how changes in this ecosystem could contribute to disease."

Historically, doctors studied microbes by isolating them from a single patient sample and growing them in a culture. This painstaking process identified only a few species at a time, and was often inaccurate. The HMP researchers instead purified all human and microbial DNA from each of the more than 5,000 samples collected from various body sites of 242 healthy U.S. volunteers, running them through advanced DNA sequencers. Using data-analysis tools recently developed by Gladstone researchers and their colleagues, consortium members then used specific DNA signatures to identify individual microbes. Focusing on this so-called "microbial signature" helped researchers such as Dr. Pollard pinpoint individual species that had never before been characterized—and extrapolate the roles the species play in human health.

The results have proven to be a treasure-trove of new data. Where researchers had previously isolated only a few hundred microbial species that live on humans, researchers now calculate that more than 10,000 species make up the human microbiome.

"We have defined the boundaries of normal microbial variation in humans," said James M. Anderson, MD, PhD, director of the NIH Division of Program Coordination, Planning and Strategic Initiatives. "We now have a very good idea of what is normal for a healthy Western population and are beginning to learn how changes in the microbiome correlate with physiology and disease."

In Dr. Pollard's analysis, she and her colleagues found three types of gut bacteria never before seen by researchers. And given that samples all came from one population, there is hope that casting a wider net to include samples from around the world could help scientists paint a picture of how microbiomes differ across populations—and how those differences could influence disease.

"Preliminary research has shown that microbes in the guts of obese individuals more efficiently extract energy from fat than that of non-obese individuals—and could play a role the development of the disease," said Dr. Pollard, who is also an associate professor at the University of California, San Francisco, with which Gladstone is affiliated. "As we expand our dataset to include global populations, we can gain new insight into how microbes may be implicated not only in obesity, but in a whole host of disorders—including Type I diabetes, inflammatory bowel disease and many neurological conditions."

Dr. Pollard's research was performed in collaboration with George Weinstock, PhD, and his team at Washington University in St. Louis. Other scientists who participated in this research at Gladstone include Rebecca Truty, PhD, and Thomas Sharpton, PhD. Funding came from the San Simeon Fund, the Gordon and Betty Moore Foundation and the National Science Foundation.

About the National Institutes of Health

NIH, the nation's medical research agency, includes 27 institutes and centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical and translational medical research, and is investigating the causes, treatments and cures for both common and rare diseases.
About the Gladstone Institutes

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>