Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concussion secrets unveiled in mice and people

09.12.2013
NIH scientists film early concussion damage and describe brain's response to injury

There is more than meets the eye following even a mild traumatic brain injury. While the brain may appear to be intact, new findings reported in Nature suggest that the brain's protective coverings may feel the brunt of the impact.


This 3D MRI of a human brain reveals injury (in red) to the brain's coverings following mild head trauma.

Credit: Image courtesy of Lawrence Latour, Ph.D., National Institutes of Health and the Center for Neuroscience and Regenerative Medicine.

Using a newly developed mouse trauma model, senior author Dorian McGavern, Ph.D., scientist at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health, watched specific cells mount an immune response to the injury and try to prevent more widespread damage. Notably, additional findings suggest a similar immune response may occur in patients with mild head injury.

In this study, researchers also discovered that certain molecules, when applied directly to the mouse skull, can bypass the brain's protective barriers and enter the brain. The findings suggested that, in the mouse trauma model, one of those molecules may reduce effects of brain injury.

Although concussions are common, not much is known about the effects of this type of damage. As part of this study, Lawrence Latour, Ph.D., a scientist from NINDS and the Center for Neuroscience and Regenerative Medicine, examined individuals who had recently suffered a concussion but whose initial scans did not reveal any physical damage to brain tissue. After administering a commonly used dye during MRI scans, Latour and his colleagues saw it leaking into the meninges, the outer covers of the brain, in 49 percent of 142 patients with concussion.

To determine what happens following this mild type of injury, researchers in Dr. McGavern's lab developed a new model of brain trauma in mice.

"In our mice, there was leakage from blood vessels right underneath the skull bone at the site of injury, similar to the type of effect we saw in almost half of our patients who had mild traumatic brain injury. We are using this mouse model to look at meningeal trauma and how that spreads more deeply into the brain over time," said Dr. McGavern.

Dr. McGavern and his colleagues also discovered that the intact skull bone was porous enough to allow small molecules to get through to the brain. They showed that smaller molecules reached the brain faster and to a greater extent than larger ones. "It was surprising to discover that all these protective barriers the brain has may not be concrete. You can get something to pass through them," said Dr. McGavern.

The researchers found that applying glutathione (an antioxidant that is normally found in our cells) directly on the skull surface after brain injury reduced the amount of cell death by 67 percent. When the researchers applied glutathione three hours after injury, cell death was reduced by 51 percent. "This idea that we have a time window within which to work, potentially up to three hours, is exciting and may be clinically important," said Dr. McGavern.

Glutathione works by decreasing levels of reactive oxygen species (ROS) molecules that damage cells. In this study, high levels of ROS were observed at the trauma site right after the physical brain injury occurred. The massive flood of ROS set up a sequence of events that led to cell death in the brain, but glutathione was able to prevent many of those effects.

In addition, using a powerful microscopic technique, the researchers filmed what was happening just beneath the skull surface within five minutes of injury. They captured never-before-seen details of how the brain responds to traumatic injury and how it mobilizes to defend itself.

Initially, they saw cell death in the meninges and at the glial limitans (a very thin barrier at the surface of the brain that is the last line of defense against dangerous molecules). Cell death in the underlying brain tissue did not occur until 9-12 hours after injury. "You have death in the lining first and then this penetrates into the brain tissue later. The goal of therapies for brain injury is to protect the brain tissue," said Dr. McGavern.

Almost immediately after head injury, the glial limitans can break down and develop holes, providing a way for potentially harmful molecules to get into the brain. The researchers observed microglia (immune cells that act as first responders in the brain against dangerous substances) quickly moving up to the brain surface, plugging up the holes.

Findings from Dr. McGavern's lab indicate that microglia do this in two ways. According to Dr. McGavern, "If the astrocytes, the cells that make up the glial limitans, are still there, microglia will come up to 'caulk' the barrier and plug up gaps between individual astrocytes. If an astrocyte dies, that results in a larger space in the glial limitans, so the microglia will change shape, expand into a fat jellyfish-like structure and try to plug up that hole. These reactions, which have never been seen before in living brains, help secure the barrier and prevent toxic substances from getting into the brain."

Studies have suggested that immune responses in the brain can often lead to severe damage. Remarkably, the findings in this study show that the inflammatory response in a mild traumatic brain injury model is actually beneficial during the first 9-12 hours after injury.

Mild traumatic brain injuries are a growing public health concern. According to a report from the Centers of Disease Control and Prevention, in 2009 at least 2.4 million people suffered a traumatic brain injury and 75 percent of those injuries were mild. This study provides insight into the damage that occurs following head trauma and identifies potential therapeutic targets, such as antioxidants, for reducing the damaging effects.

Video: The brain's early response to concussion
http://youtu.be/EbjGxCEL3gk
Video: Concussion secrets unveiled with Dr. Dorian McGavern
http://youtu.be/-ws63-1ADIQ
References:
Theodore L. Roth et al. "Transcranial amelioration of inflammation and cell death following brain injury," Nature, December 8, 2013.

For more information about traumatic brain injury, please visit: http://www.ninds.nih.gov/disorders/tbi/tbi.htm http://www.ninds.nih.gov/disorders/tbi/detail_tbi.htm

NINDS is the nation's leading funder of research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease – a burden borne by every age group, by every segment of society, by people all over the world.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

About the Center for Neuroscience and Regenerative Medicine (CNRM): The Center for Neuroscience and Regenerative Medicine (CNRM) is a collaborative intramural federal program involving the U.S. Department of Defense and the National Institutes of Health to bring together the expertise of clinicians and scientists across disciplines to catalyze innovative approaches to traumatic brain injury (TBI) research.

Barbara McMakin | EurekAlert!
Further information:
http://www.ninds.nih.gov

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>