Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concussion secrets unveiled in mice and people

09.12.2013
NIH scientists film early concussion damage and describe brain's response to injury

There is more than meets the eye following even a mild traumatic brain injury. While the brain may appear to be intact, new findings reported in Nature suggest that the brain's protective coverings may feel the brunt of the impact.


This 3D MRI of a human brain reveals injury (in red) to the brain's coverings following mild head trauma.

Credit: Image courtesy of Lawrence Latour, Ph.D., National Institutes of Health and the Center for Neuroscience and Regenerative Medicine.

Using a newly developed mouse trauma model, senior author Dorian McGavern, Ph.D., scientist at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health, watched specific cells mount an immune response to the injury and try to prevent more widespread damage. Notably, additional findings suggest a similar immune response may occur in patients with mild head injury.

In this study, researchers also discovered that certain molecules, when applied directly to the mouse skull, can bypass the brain's protective barriers and enter the brain. The findings suggested that, in the mouse trauma model, one of those molecules may reduce effects of brain injury.

Although concussions are common, not much is known about the effects of this type of damage. As part of this study, Lawrence Latour, Ph.D., a scientist from NINDS and the Center for Neuroscience and Regenerative Medicine, examined individuals who had recently suffered a concussion but whose initial scans did not reveal any physical damage to brain tissue. After administering a commonly used dye during MRI scans, Latour and his colleagues saw it leaking into the meninges, the outer covers of the brain, in 49 percent of 142 patients with concussion.

To determine what happens following this mild type of injury, researchers in Dr. McGavern's lab developed a new model of brain trauma in mice.

"In our mice, there was leakage from blood vessels right underneath the skull bone at the site of injury, similar to the type of effect we saw in almost half of our patients who had mild traumatic brain injury. We are using this mouse model to look at meningeal trauma and how that spreads more deeply into the brain over time," said Dr. McGavern.

Dr. McGavern and his colleagues also discovered that the intact skull bone was porous enough to allow small molecules to get through to the brain. They showed that smaller molecules reached the brain faster and to a greater extent than larger ones. "It was surprising to discover that all these protective barriers the brain has may not be concrete. You can get something to pass through them," said Dr. McGavern.

The researchers found that applying glutathione (an antioxidant that is normally found in our cells) directly on the skull surface after brain injury reduced the amount of cell death by 67 percent. When the researchers applied glutathione three hours after injury, cell death was reduced by 51 percent. "This idea that we have a time window within which to work, potentially up to three hours, is exciting and may be clinically important," said Dr. McGavern.

Glutathione works by decreasing levels of reactive oxygen species (ROS) molecules that damage cells. In this study, high levels of ROS were observed at the trauma site right after the physical brain injury occurred. The massive flood of ROS set up a sequence of events that led to cell death in the brain, but glutathione was able to prevent many of those effects.

In addition, using a powerful microscopic technique, the researchers filmed what was happening just beneath the skull surface within five minutes of injury. They captured never-before-seen details of how the brain responds to traumatic injury and how it mobilizes to defend itself.

Initially, they saw cell death in the meninges and at the glial limitans (a very thin barrier at the surface of the brain that is the last line of defense against dangerous molecules). Cell death in the underlying brain tissue did not occur until 9-12 hours after injury. "You have death in the lining first and then this penetrates into the brain tissue later. The goal of therapies for brain injury is to protect the brain tissue," said Dr. McGavern.

Almost immediately after head injury, the glial limitans can break down and develop holes, providing a way for potentially harmful molecules to get into the brain. The researchers observed microglia (immune cells that act as first responders in the brain against dangerous substances) quickly moving up to the brain surface, plugging up the holes.

Findings from Dr. McGavern's lab indicate that microglia do this in two ways. According to Dr. McGavern, "If the astrocytes, the cells that make up the glial limitans, are still there, microglia will come up to 'caulk' the barrier and plug up gaps between individual astrocytes. If an astrocyte dies, that results in a larger space in the glial limitans, so the microglia will change shape, expand into a fat jellyfish-like structure and try to plug up that hole. These reactions, which have never been seen before in living brains, help secure the barrier and prevent toxic substances from getting into the brain."

Studies have suggested that immune responses in the brain can often lead to severe damage. Remarkably, the findings in this study show that the inflammatory response in a mild traumatic brain injury model is actually beneficial during the first 9-12 hours after injury.

Mild traumatic brain injuries are a growing public health concern. According to a report from the Centers of Disease Control and Prevention, in 2009 at least 2.4 million people suffered a traumatic brain injury and 75 percent of those injuries were mild. This study provides insight into the damage that occurs following head trauma and identifies potential therapeutic targets, such as antioxidants, for reducing the damaging effects.

Video: The brain's early response to concussion
http://youtu.be/EbjGxCEL3gk
Video: Concussion secrets unveiled with Dr. Dorian McGavern
http://youtu.be/-ws63-1ADIQ
References:
Theodore L. Roth et al. "Transcranial amelioration of inflammation and cell death following brain injury," Nature, December 8, 2013.

For more information about traumatic brain injury, please visit: http://www.ninds.nih.gov/disorders/tbi/tbi.htm http://www.ninds.nih.gov/disorders/tbi/detail_tbi.htm

NINDS is the nation's leading funder of research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease – a burden borne by every age group, by every segment of society, by people all over the world.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

About the Center for Neuroscience and Regenerative Medicine (CNRM): The Center for Neuroscience and Regenerative Medicine (CNRM) is a collaborative intramural federal program involving the U.S. Department of Defense and the National Institutes of Health to bring together the expertise of clinicians and scientists across disciplines to catalyze innovative approaches to traumatic brain injury (TBI) research.

Barbara McMakin | EurekAlert!
Further information:
http://www.ninds.nih.gov

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>