Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound for slowing the aging process can lead to novel treatments for brain diseases

04.12.2013
A step toward development of drugs for diseases like Alzheimer's, Parkinson's and Huntington's

A successful joint collaboration between researchers at the Hebrew university of Jerusalem and the startup company TyrNovo may lead to a potential treatment of brain diseases. The researchers found that TyrNovo’s novel and unique compound, named NT219, selectively inhibits the process of aging in order to protect the brain from neurodegenerative diseases, without affecting lifespan. This is a first and important step towards the development of future drugs for the treatment of various neurodegenerative maladies.

Human neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases share two key features: they stem from toxic protein aggregation and emerge late in life. The common temporal emergence pattern exhibited by these maladies proposes that the aging process negatively regulates protective mechanisms that prevent their manifestation early in life, exposing the elderly to disease. This idea has been the major focus of the work in the laboratory of Dr. Ehud Cohen of the Department of Biochemistry and Molecular Biology, at the Institute for Medical Research Israel-Canada in the Hebrew University of Jerusalem's Faculty of Medicine.

Cohen’s first breakthrough in this area occurred when he discovered, working with worms, that reducing the activity of the signaling mechanism conveyed through insulin and the growth hormone IGF1, a major aging regulating pathway, constituted a defense against the aggregation of the Aâ protein which is mechanistically-linked with Alzheimer’s disease.

Later, he found that the inhibition of this signaling route also protected Alzheimer's-model mice from behavioral impairments and pathological phenomena typical to the disease. In these studies, the path was reduced through genetic manipulation, a method not applicable in humans.

Dr. Hadas Reuveni, the CEO of TyrNovo, a startup company formed for the clinical development of NT219, and Prof. Alexander Levitzki from the Department of Biological Chemistry at the Hebrew University, with their research teams, discovered a new set of compounds that inhibit the activity of the IGF1 signaling cascade in a unique and efficient mechanism, primarily for cancer treatment, and defined NT219 as the leading compound for further development.

Now, in a fruitful collaboration Dr. Cohen and Dr. Reuveni, together with Dr. Cohen's associates Tayir El-Ami and Lorna Moll, have demonstrated that NT219 efficiently inhibits IGF1 signaling, in both worms and human cells. The inhibition of this signaling pathway by NT219 protected worms from toxic protein aggregation that in humans is associated with the development of Alzheimer's or Huntington's disease.

The discoveries achieved during this project, which was funded by the Rosetrees Trust of Britain, were published this week in the journal Aging Cell ("A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity"). The findings strengthen the notion that the inhibition of the IGF1 signaling pathway has a therapeutic potential as a treatment for neurodegenerative disorders. They also point at NT219 as the first compound that provides protection from neurodegeneration-associated toxic protein aggregation through a selective manipulation of aging.

Cohen, Reuveni and Levitzki have filed a patent application that protects the use of NT219 as a treatment for neurodegenerative maladies through Yissum, the technology transfer company of the Hebrew University. Dr. Gil Pogozelich, chairman of Goldman Hirsh Partners Ltd., which holds the controlling interest in TyrNovo, says that he sees great importance in the cooperation on this project with the Hebrew University, and that TyrNovo represents a good example of how scientific and research initiatives can further health care together with economic benefits.

Recently, Dr. Cohen's laboratory obtained an ethical approval to test the therapeutic efficiency of NT219 as a treatment in Alzheimer's-model mice, hoping to develop a future treatment for hitherto incurable neurodegenerative disorders.

For information, contact:

Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
jerryb@savion.huji.ac.il
or
Ofra Ash, Head of Marketing & Communication
02-5882910 / 054-8820425 (international: 972-54-5882904)
ofraas@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>