Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound holds promise for treating Duchenne MD, other inherited diseases

28.06.2012
RTC 13 effectively counteracts 'nonsense' mutation that causes disorder

Scientists at UCLA have identified a new compound that could treat certain types of genetic disorders in muscles. It is a big first step in what they hope will lead to human clinical trials for Duchenne muscular dystrophy.

Duchenne muscular dystrophy, or DMD, is a degenerative muscle disease that affects boys almost exclusively. It involves the progressive degeneration of voluntary and cardiac muscles, severely limiting the life span of sufferers.

In a new study, senior author Carmen Bertoni, an assistant professor in the UCLA Department of Neurology, first author Refik Kayali, a postgraduate fellow in Bertoni's lab, and their colleagues demonstrate the efficacy of a new compound known as RTC13, which suppresses so-called "nonsense" mutations in a mouse model of DMD.

The findings appear in the current online edition of the journal Human Molecular Genetics.

"We are excited about these new findings because they represent a major step toward the development of a drug that could potentially treat this devastating disease in humans," Bertoni said. "We knew that the compounds were effective in cells isolated from the mouse model for DMD, but we did not know how they would behave when administered in a living organism."

Nonsense mutations are generally caused by a single change in DNA that disrupts the normal cascade of events that changes a gene into messenger RNA, then into a protein. The result is a non-functioning protein. Approximately 13 percent of genetic defects known to cause diseases are due to such mutations. In the case of DMD, the "missing" protein is called dystrophin.

For the study, Bertoni and Kayali collaborated with the laboratory of Dr. Richard Gatti, a professor of pathology and laboratory medicine and of human genetics at UCLA. Working with the UCLA Molecular Shared Screening Resource facility at the campus's California NanoSystems Institute, the Gatti lab screened some 35,000 small molecules in the search for new compounds that could ignore nonsense mutations. Two were identified as promising candidates: RTC13 and RTC14.

The Bertoni lab tested RTC13 and RTC14 in a mouse model of DMD carrying a nonsense mutation in the dystrophin gene. While RTC14 was not found to be effective, RTC13 was able to restore significant amounts of dystrophin protein, making the compound a promising drug candidate for DMD. When RTC13 was administered to mice for five weeks, the investigators found that the compound partially restored full-length dystrophin, which resulted in a significant improvement in muscle strength. The loss of muscle strength is a hallmark of DMD.

The researchers also compared the level of dystrophin achieved to the levels seen with another experimental compound, PTC124, which has proved disappointing in clinical trials; RTC13 was found to be more effective in promoting dystrophin expression. Just as important, Bertoni noted, the study found that RTC13 was well tolerated in animals, which suggests it may also be safe to use in humans.

The next step in the research is to test whether an oral formulation of the compound would be effective in achieving therapeutically relevant amounts of dystrophin protein. If so, planning can then begin for clinical testing in patients and for expanding these studies to other diseases that may benefit from this new drug.

Other study authors included Jin-Mo Ku, Gregory Khitrov, Michael E. Jung and Olga Prikhodko, all from UCLA. The researchers report no conflicts of interest. The work has been supported in large part by the Muscular Dystrophy Association (MDA) and, more recently, by the National Institutes of Health.

The UCLA Department of Neurology, with over 100 faculty members, encompasses more than 20 disease-related research programs, along with large clinical and teaching programs. These programs cover brain-mapping and neuroimaging, movement disorders, Alzheimer's disease, multiple sclerosis, neurogenetics, nerve and muscle disorders, epilepsy, neuro-oncology, neurotology, neuropsychology, headaches and migraines, neurorehabilitation, and neurovascular disorders. The department ranks in the top two among its peers nationwide in National Institutes of Health funding.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>