Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound discovered that rapidly kills liver cancer

14.03.2012
Scientists have identified a new compound that rapidly kills hepatocellular carcinoma (HCC) cells, the most common form of liver cancer and fifth most common cancer worldwide, while sparing healthy tissue.

The compound, Factor Qunolinone Inhibitor 1 (FQI1), works by inhibiting an oncogene originally discovered by a team of researchers led by Devanand Sarkar, M.B.B.S., Ph.D., Harrison Scholar at Virginia Commonwealth University (VCU) Massey Cancer Center, Blick Scholar and assistant professor in the Department of Human and Molecular Genetics and member of the VCU Institute of Molecular Medicine at the VCU School of Medicine.

Recently published in the journal Proceedings of the National Academy of Sciences, the study demonstrates that HCC cells have what is known as an "oncogene addiction" to the transcription factor Late SV40 Factor (LSF). Oncogene addiction is a term used when a cancer cell is found to be dependent on a single gene to survive. Using the compound Factor Quinolinone Inhibitor 1 (FQI1), the scientists prevented LSF from binding to HCC DNA during the transcription process, which is the first step in a series of actions that lead to cell division and duplication. This action caused rapid HCC cell death in laboratory experiments and a dramatic reduction in tumor growth in mouse models with no observable toxicity to normal liver cells.

"We may be on the verge of developing a new, effective drug for liver cancer," said Sarkar. "In the last 2 to 3 years, we demonstrated the role of LSF in liver cancer and have been screening over 110,000 compounds to identify the ones that inhibit LSF function. We identified FQI1 as one of a class of effective compounds, but we never anticipated it would work this well."

Sarkar discovered LSF's role in liver cancer in 2010 when he demonstrated significantly higher LSF levels in HCC patients in comparison to healthy individuals, and showed that inhibition of LSF reduced the progression of HCC in laboratory experiments. This finding led to the collaboration between VCU and Boston University that resulted in the discovery of FQI1.

Now that FQI1 has been identified, pharmacokinetic studies are being conducted to determine how the drug behaves in the human body. Once the scientists have determined how the drug is absorbed, distributed, metabolized and eliminated from the body, they will work with clinicians to translate their findings into phase I clinical trials in patients with liver cancer.

"We have proven this compound is effective and nontoxic in living animals," said Sarkar. "While we won't know how FQI1 reacts in humans until the first clinical trial, we are very excited by our findings and hope they lead to a new drug for a disease that is currently very difficult to treat."

The lead investigators on this study were Trevor J. Grant and Joshua Bishop, Ph.D., from Boston University. In addition to Grant and Bishop, Sarkar collaborated with Ayesha Siddiq, Ph.D., Rachel Gredler and Xue-Ning Shen, M.D., from VCU School of Medicine; Jennifer Sherman and Kevin Fitzgerald, Ph.D., from Alnylam Pharmaceuticals, Inc.; Sriharsa Pradhan, Ph.D., from New England Biolabs, Inc.; Laura A. Briggs, Ph.D., and William H. Andrews, Ph.D., from Sierra Sciences, LLC; and Lisa Christadore, Girish Barot, Ph.D., Hang Gyeong Chin, Sarah Woodson, John Kavouris, Tracy Meehan, Scott E. Schaus, Ph.D., and Ulla Hansen, Ph.D., from Boston University.

The full manuscript is available online at: http://www.pnas.org/content/early/2012/03/02/1121601109.full.pdf+html

News directors: Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact John Wallace, (804) 628-1550.

About VCU Massey Cancer Center: VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>