Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commonly used supplement may improve recovery from spinal cord injuries

29.09.2011
A commonly used supplement is likely to improve outcomes and recovery for individuals who sustain a spinal cord injury (SCI), according to research conducted by University of Kentucky neuroscientists.

Sasha Rabchevsky, associate professor of physiology, Patrick Sullivan, associate professor of anatomy and neurobiology, and Samir Patel, senior research scientist -- all of the UK Spinal Cord and Brain Injury Research Center (SCoBIRC) -- have discovered that in experimental models, severe spinal cord injury can be treated effectively by administering the supplement acetyl-L-carnitine or ALC, a derivative of essential amino acids that can generate metabolic energy, soon after injury.

The researchers previously reported that following spinal cord injury, the mitochondria, or energy-generation components of cells, are overwhelmed by chemical stresses and lose the ability to produce energy in the form of the compound adenosine triphosphate (ATP). [1,2] This leads to cell death at the injury site and, ultimately, paralysis of the body below the injury level.

Rabchevsky, Sullivan and Patel have recently demonstrated that ALC can preserve the vitality of mitochondria by acting as an alternative biofuel providing energy to cells, thus bypassing damaged mitochondrial enzymes and promoting neuroprotection. [3]

Results soon to be published show that systemic administration of ALC soon after a paralyzing injury promoted the milestone recovery of the ability to walk. Unlike the animal control group given no ALC, which regained only slight hindlimb movements, the group treated with ALC recovered hindlimb movements more quickly and were able to stand on all four limbs and walk a month later. Critically, such remarkable recovery was correlated with significant tissue sparing at the injury site following administration of ALC.

Because ALC can be administered orally, and is well-tolerated at relatively high doses in humans, researchers believe that their discovery may be translated easily to clinical practice as an early intervention for people with traumatic spinal cord injuries.

Initial funding for these studies was provided by the Kentucky Spinal Cord and Head Injury Research Trust (KSCHIRT). Based on their findings, the research team has been awarded additional grant funding from the National Institutes of Health (NIH) and the Craig H. Neilsen Foundation, with the aim of enabling the investigators to study the beneficial effects of combining ALC with an antioxidant agent known as N-acetylcysteine amide (NACA). The results were reported at the recent National Neurotrauma Society Symposium in July 2011, and will be presented again at the Society for Neuroscience meeting in November 2011.

When translated into clinical practice, this research is expected to offer a viable pharmacological option for promoting neuroprotection and maximizing functional recover following traumatic spinal cord injury.

MEDIA CONTACT
Allison Elliott
allison.elliott@uky.edu
1. Patel, S.P., et al., Differential effects of the mitochondrial uncoupling agent, 2,4-dinitrophenol, or the nitroxide antioxidant, Tempol, on synaptic or nonsynaptic mitochondria after spinal cord injury. J Neurosci Res, 2009. 87(1): p. 130-40.

2. Sullivan, P.G., et al., Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma, 2007. 24(6): p. 991-9.

3. Patel, S.P., et al., Acetyl-L-Carnitine Ameliorates Mitochondrial Dysfunction Following Contusion Spinal Cord Injury. J Neurochem, 2010 114(1): 291-301.

Allison Elliott | EurekAlert!
Further information:
http://www.uky.edu

Further reports about: Neurotrauma amino acid injury limb movements spinal spinal cord spinal cord injury

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>