Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commonly-prescribed drugs may influence the onset and progression of Alzheimer's disease

13.06.2013
Mount Sinai researchers find reduction in brain plaques in mice after treatment with drugs currently prescribed for other indications

Multiple drug classes commonly prescribed for common medical conditions are capable of influencing the onset and progression of Alzheimer's disease, according to researchers at The Mount Sinai Medical Center. The findings are published online in the journal PLoS One.

Led by Giulio Maria Pasinetti, MD, PhD, the Saunders Family Chair and Professor in Neurology at Mount Sinai, a research team used a computer algorithm to screen 1,600 commercially-available medications to assess their impact on the brain accumulation of beta-amyloid, a protein abnormally accumulated in the brain of Alzheimer's disease and implicated in neurodegeneration.

They found that currently-available medications prescribed for conditions such as hypertension, depression, and insomnia were found to either to block or to enhance the accumulation of beta-amyloid, the component of amyloid plaques.

"This line of investigation will soon lead to the identification of common medications that might potentially trigger conditions associated with the prevention, or conversely the onset, of Alzheimer's disease," said Dr. Pasinetti. "They may be a novel reference for physicians to consider when prescribing the most appropriate drug, particularly in subjects at high risk for Alzheimer's disease."

To validate the screening protocol, Dr. Pasinetti and his colleagues administered these drugs in mice that were genetically engineered to develop the hallmark amyloid plaques associated with Alzheimer's disease. After six months of treatment with blood pressure medicines, amyloid plaques and neurodegeneration were significantly reduced in the mice. One such medicine was Carvedilol, now under clinical investigation in Alzheimer 's disease with the intent to slow down memory deterioration.

"In recent years, amyloid plaques have become one of the main focal points in the search to understand and to treat Alzheimer's disease," said Dr. Pasinetti. "Thus, identifying novel drug treatments that prevent harmful beta-amyloid generation will help in the development of treatments for Alzheimer's disease. For example, one very exciting finding of our study is that Carvedilol, already approved for treatment of hypertension, may immediately become a promising drug for the treatment of Alzheimer's as well."

The authors discuss the limitations of the research, noting that studies must be immediately verified in human-safety studies that examine the effects of the drugs independent of the original indication. Dr. Pasinetti hopes these findings will lead to multiple clinical trials in the future to identify preventive drugs, which will need to be prescribed at tolerable dosages.

"If we can repurpose drugs currently used for different indications, such as lowering blood pressure, this could have dramatic implications for this population," said Dr. Pasinetti.

The study was supported by a grant from the National Institutes of Health (Grant UO1-AG029310).

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>