Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Treatments Can Lead to Antibiotic Resistance

19.09.2011
Overexposure to antibiotics has long been a concern in the medical community – most specifically the development of antibiotic resistant infections as a result of repeated use.

According to a study released this week in the Archives of Ophthalmology, ophthalmologic antibiotics promote antimicrobial resistance too, prompting a call from Vanderbilt Eye Institute physicians to be more judicial in the administration of certain classes of antibiotics.

“The use of topical antibiotics is promoting antimicrobial resistance, prompting an emergence of resistant strains,” said Stephen Kim, M.D., assistant professor of Ophthalmology and Visual Sciences. “This finding is very important for all practicing physicians to be aware of and understand. This information is broadly applicable to everyone.

“This is the first perspective study looking at this, and we were able to convincingly show cause and effect. There needs to be more rational thought when using topical antibiotics.”

Intravitreal injections are the fastest growing procedure in ophthalmology.

In 2008 there were more than 1 million injections performed in the United States, and this number is rising exponentially.

As intraocular injection rates soar, the number of post-injection eye infections (endophthalmitis) will also undoubtedly increase.

Consequently, there has been a dramatic increase in the routine use of topical antibiotics after intravitreal injections in order to reduce endophthalmitis, which is the most devastating complication of intravitreal injections and can result in severe and permanent vision loss.

Aware of this increasing trend of antibiotic use, Kim and colleagues at VEI studied 24 patients undergoing intravitreal injection treatments for macular degeneration. As part of the “Antibiotic Resistance of Conjunctiva and Nasopharynx Evaluation” (ARCaNE) study, patients were randomly assigned to one of four ophthalmic antibiotics to be used after each injection in the treated eye only. The patient’s other eye was not exposed to antibiotics and served as a control.

Patients were followed for one year. Prior to the first injection, all patients underwent baseline conjunctival cultures of both eyes.

During the study period, repeated cultures were taken in both eyes post injection, as well as in the nasopharynx on the same side of the treated eye.

Kim wanted to determine if there were changes in patterns of antibiotic susceptibility of the conjunctival and nasopharyngeal flora after repeated exposure to antibiotics.

“Usually when someone puts in an eye drop, 40 percent of that drop goes into the nasopharnyx,” explained Kim. “The nasopharnyx is host to many different specious and strains of bacteria, some of which can directly cause life-threatening infections such as pneumonia and sepsis.

“Alternating resistance patterns of bacteria in the nasopharnyx may result in more treatment resistant infections.”

According to Kim, topical ophthalmic antibiotics may select for resistant strains in the eye and nasopharnyx and promote the emergence of superbugs with resistance to multiple antibiotics.

“This may have deleterious consequence on our ability to treat future infections,” Kim said.

Preliminary findings from the study were reported in the December 2010 issue of Ophthalmology, which showed substantial baseline resistance patterns.

Jessica Pasley | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>