Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common gene variant may increase risk for a type of cardiac arrhythmia

22.02.2010
Gene associated with atrial fibrillation in younger patients without known risk factors

An international research team has identified a common gene variant associated with a form of the irregular heartbeat called atrial fibrillation. In their report in the journal Nature Genetics, being published online, the investigators describe finding that variations affecting a protein that may help control the heart's electrical activity appear to increase the risk of what is called lone atrial fibrillation (AF), a type seen in younger individuals with no other form of heart disease.

"The genetic location we have identified could be a new drug target for the treatment of AF," says Patrick Ellinor, MD, PhD, of the Massachusetts General Hospital (MGH) Cardiovascular Research Center and Cardiac Arrhythmia Service, a co-corresponding author of the report. "We also will be investigating whether these variants can help us predict patients' clinical outcomes or their response to the various treatments for AF."

The most common type of irregular heartbeat, atrial fibrillation affects more than 2.2 million people in the U.S. In AF the upper chambers of the heart, called the atria, beat in a rapid and uncoordinated fashion, which can cause blood to pool within the heart. If blood clots form within the heart, they can break loose, travel to the brain and cause a stroke. While AF is most commonly seen in older individuals with hypertension, heart failure or other forms of heart disease, about 10 percent of AF patients begin having symptoms when they are younger and have no other known cardiovascular disease, a condition called lone AF.

Patients with lone AF are more likely to have overt symptoms and to require treatment, which includes the use of blood-thinning drugs to prevent clots and other medications that slow heart rhythm. If AF persists, procedures such as minimally invasive catheter ablation can inactivate the regions of the heart that trigger the arrhythmia.

Family history is known to increase the risk of AF and plays a larger role in lone AF. Several earlier genome-wide association studies (GWAS) linked gene variants on chromosomes 4 and 16 to increased risk for both forms of AF. To search for additional variants associated with the more heritable lone AF, the research team conducted a meta-analysis of five previous GWAS studies involving more than 1,300 individuals with lone AF – defined for this study as those with no other heart disease whose symptoms began before age 65 – and almost 13,000 unaffected participants.

The analysis associated lone AF with several common variants on a segment of chromosome 1. The most significant variants were found in the gene for KCNN3, a potassium channel protein that carries signals across cell membranes in organs including the brain and the heart. While the exact cardiac role of the protein is unknown, it may play a part in resetting the electrical activity of the atria, a process that goes awry in AF. Animal studies have suggested that a related protein, KCNN2, may help control signals originating in the atria and in the pulmonary veins, areas known to be involved in lone AF. The researchers replicated the association of KCNN3 variants with lone AF in data from two additional GWAS studies involving another 1,000 lone AF patients and 3,500 controls.

Ellinor, an assistant professor of Medicine at Harvard Medical School, and his colleagues note that additional study is required to clarify exactly how variations in KCNN3 and associated genes may affect the risk for lone AF, whether these and other gene variants can predict how a patient's symptoms will progress and to investigate their usefulness as treatment targets. The study was supported by a wide range of public and private funders, including the National Institutes of Health.

Primary co-authors of the Nature Genetics study are Kathryn Lunetta and Emelia Benjamin, Boston University and Framingham Heart Study; Nicole Glazer, Dan Arking and Susan Heckbert, University of Washington; Arne Pfeufer, Technical University of Munich; Alvaro Alonso, University of Minnesota; Mina Chung and John Barnard, Cleveland Clinic; Moritz Sinner, Ludwig-Maximilians University of Munich; Jacqueline Witteman, Erasmus Medical Center, Rotterdam; and co-corresponding author Stefan Kaab, Ludwig-Maximilians University of Munich.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Jennifer Gundersen | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>