Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common gene variant may increase risk for a type of cardiac arrhythmia

22.02.2010
Gene associated with atrial fibrillation in younger patients without known risk factors

An international research team has identified a common gene variant associated with a form of the irregular heartbeat called atrial fibrillation. In their report in the journal Nature Genetics, being published online, the investigators describe finding that variations affecting a protein that may help control the heart's electrical activity appear to increase the risk of what is called lone atrial fibrillation (AF), a type seen in younger individuals with no other form of heart disease.

"The genetic location we have identified could be a new drug target for the treatment of AF," says Patrick Ellinor, MD, PhD, of the Massachusetts General Hospital (MGH) Cardiovascular Research Center and Cardiac Arrhythmia Service, a co-corresponding author of the report. "We also will be investigating whether these variants can help us predict patients' clinical outcomes or their response to the various treatments for AF."

The most common type of irregular heartbeat, atrial fibrillation affects more than 2.2 million people in the U.S. In AF the upper chambers of the heart, called the atria, beat in a rapid and uncoordinated fashion, which can cause blood to pool within the heart. If blood clots form within the heart, they can break loose, travel to the brain and cause a stroke. While AF is most commonly seen in older individuals with hypertension, heart failure or other forms of heart disease, about 10 percent of AF patients begin having symptoms when they are younger and have no other known cardiovascular disease, a condition called lone AF.

Patients with lone AF are more likely to have overt symptoms and to require treatment, which includes the use of blood-thinning drugs to prevent clots and other medications that slow heart rhythm. If AF persists, procedures such as minimally invasive catheter ablation can inactivate the regions of the heart that trigger the arrhythmia.

Family history is known to increase the risk of AF and plays a larger role in lone AF. Several earlier genome-wide association studies (GWAS) linked gene variants on chromosomes 4 and 16 to increased risk for both forms of AF. To search for additional variants associated with the more heritable lone AF, the research team conducted a meta-analysis of five previous GWAS studies involving more than 1,300 individuals with lone AF – defined for this study as those with no other heart disease whose symptoms began before age 65 – and almost 13,000 unaffected participants.

The analysis associated lone AF with several common variants on a segment of chromosome 1. The most significant variants were found in the gene for KCNN3, a potassium channel protein that carries signals across cell membranes in organs including the brain and the heart. While the exact cardiac role of the protein is unknown, it may play a part in resetting the electrical activity of the atria, a process that goes awry in AF. Animal studies have suggested that a related protein, KCNN2, may help control signals originating in the atria and in the pulmonary veins, areas known to be involved in lone AF. The researchers replicated the association of KCNN3 variants with lone AF in data from two additional GWAS studies involving another 1,000 lone AF patients and 3,500 controls.

Ellinor, an assistant professor of Medicine at Harvard Medical School, and his colleagues note that additional study is required to clarify exactly how variations in KCNN3 and associated genes may affect the risk for lone AF, whether these and other gene variants can predict how a patient's symptoms will progress and to investigate their usefulness as treatment targets. The study was supported by a wide range of public and private funders, including the National Institutes of Health.

Primary co-authors of the Nature Genetics study are Kathryn Lunetta and Emelia Benjamin, Boston University and Framingham Heart Study; Nicole Glazer, Dan Arking and Susan Heckbert, University of Washington; Arne Pfeufer, Technical University of Munich; Alvaro Alonso, University of Minnesota; Mina Chung and John Barnard, Cleveland Clinic; Moritz Sinner, Ludwig-Maximilians University of Munich; Jacqueline Witteman, Erasmus Medical Center, Rotterdam; and co-corresponding author Stefan Kaab, Ludwig-Maximilians University of Munich.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $600 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Jennifer Gundersen | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>