Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common cancers evade detection by silencing parts of immune system cells

05.03.2014

Johns Hopkins researchers identify set of genes that can be turned back on and potentially allow for more effective treatment

Johns Hopkins researchers say they have identified a set of genes that appear to predict which tumors can evade detection by the body's immune system, a step that may enable them to eventually target only the patients most likely to respond best to a new class of treatment.

Immune therapy for ovarian, breast and colorectal cancer — treatments that encourage the immune system to attack cancer cells as the foreign invaders they are — has so far had limited success, primarily because the immune system often can't destroy the cancer cells. In a report published online Feb. 16 in the journal Oncotarget, the Johns Hopkins team says it has identified genes that have been repressed through so-called epigenetic changes — modifications that alter the way genes function without changing their DNA sequence — which help the cells to evade the immune system. The researchers were able to reverse these epigenetic changes with the use of an FDA-approved drug, forcing the cancer cells out of hiding and potentially making them better targets for the same immune therapy that in the past may have failed.

"Chemotherapy often works, but in most cases, it eventually stops working," says one of the study leaders, Nita Ahuja, M.D., an associate professor of surgery, oncology and urology at the Johns Hopkins University School of Medicine. "What if we could get the immune system itself to fight the tumors and keep the cancer in check forever? That is the ultimate goal, and this gene panel may get us closer." The other study leader is Cynthia Zahnow, Ph.D., an associate professor of oncology at Johns Hopkins.

... more about:
»Cancer »Medicine »breast »colorectal »genes »therapy

The researchers treated 63 cancer cell lines (26 breast, 14 colorectal and 23 ovarian) with low-dose 5-azacitidine (AZA), an FDA-approved drug for myelodysplastic syndrome, that reverses epigenetic changes by stripping off the methyl group that silences the gene. They identified a panel of 80 biological pathways commonly increased in expression by AZA in all three cancers, finding that 16 of them (20 percent) are related to the immune system. These pathways appeared to be dialed down in the cancer cells, allowing for evasion. After treatment with AZA, the epigenetic changes were reversed, rendering the cancer cells unable to evade the immune system any longer.

The researchers found that these immune system pathways were suppressed in a large number of primary tumors — roughly 50 percent of ovarian cancers studied, 40 percent of colorectal cancers and 30 percent of breast cancers. The findings may be applicable to other cancer types such as lung cancer or melanoma, they say.

After looking in cell lines, the Johns Hopkins team extended their work to human tumor samples. Again they found evidence that these immune system pathways are turned down in some patients and, that these immune genes can be turned back up in a small number of patients with breast and colorectal cancer who had been treated with epigenetic therapies.

"Most of us haven't thought of these common cancers as being immune-driven," Ahuja says. "We haven't held out much hope for immune therapy to work in them because before you can enter cancer cells to knock them down, you have to be able to get inside. They were locked and now we may have identified a key."

The hope is that clinicians could eventually pinpoint which patients with these common cancers would benefit from a dose of AZA followed by an immune therapy that stimulates the immune system to attack cancer cells.

"This would tell us which patients' tumors are hiding from the immune system and will allow us to use all of our tools to flush that cancer out," she says.

While most of the work was done in the lab, Ahuja says her colleagues have already started to put the panel into use in a lung cancer trial. Six patients were treated first with epigenetic therapy followed by immune therapy. Though the sample is small and time has been short, four of the patients have had their cancer suppressed for many months.

"If this works — and we don't know yet if it will — this could have the potential to control someone's cancer for good," she says.

###

Other Johns Hopkins researchers involved in the study include Huili Li, Ph.D.; Katherine B. Chiappinelli, Ph.D.; Angela A. Guzzetta, M.D.; Hariharan Easwaran, Ph.D.; Ray-Whay Chiu Yen, M.S.; Rajita Vatapalli; Michael J. Topper; Jianjun Luo; Roisin M. Connolly, M.B.B.S.; Nilofer S. Azad, M.D.; Vered Stearns, M.D.; Drew M. Pardoll, M.D., Ph. D.; and Stephen B. Baylin, M.D. Researchers from the University of Pittsburgh, the University of Southern California and the University of California-Los Angeles also contributed to the study.

The study was supported by grants from the National Institutes of Health's National Cancer Institute (CA058184 and K23 CA127141), Stand Up To Cancer (SU2C) Epigenetic Dream Team, Hodson Trust, the Samuel Waxman Cancer Research Foundation, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, EIF Lee Jeans, the American College of Surgeons/Society of University Surgeons, the Irving Hansen Foundation, the Safeway Foundation and LCOR.

Ahuja and Zahnow both consult for Celgene, the company that makes AZA.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report.

Stephanie Desmon |
Further information:
http://www.jhmi.edu

Further reports about: Cancer Medicine breast colorectal genes therapy

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>