Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination treatment in mice shows promise for fatal neurological disorder in kids

16.03.2012
Infants with Batten disease, a rare but fatal neurological disorder, appear healthy at birth. But within a few short years, the illness takes a heavy toll, leaving children blind, speechless and paralyzed. Most die by age 5.

There are no effective treatments for the disease, which can also strike older children. And several therapeutic approaches, evaluated in mouse models and in young children, have produced disappointing results.

But now, working in mice with the infantile form of Batten disease, scientists at Washington University School of Medicine in St. Louis and Kings College London have discovered dramatic improvements in life span and motor function by treating the animals with gene therapy and bone marrow transplants.

The results are surprising, the researchers say, because the combination therapy is far more effective than either treatment alone. Gene therapy was moderately effective in the mice, and bone marrow transplants provided no benefit, but together the two treatments created a striking synergy.

The research is online in the Annals of Neurology.

“Until now, this disease has been refractory to every therapy that has been thrown at it,” says senior author Mark Sands, PhD, professor of medicine and of genetics at the School of Medicine. “The results are the most hopeful to date, and they open up a new avenue of research to find effective therapies to fight this devastating disease.”

The combination therapy did not cure the disease, the scientists caution, but mice that received both treatments experienced significant, lasting benefits.

Mice that got gene therapy and a bone marrow transplant lived nearly 18.5 months, more than double the lifespan of untreated mice with the disease. (Healthy laboratory mice live about 24 months.) And for a significant portion of their lives, motor skills in mice that got both therapies were indistinguishable from those in normal, healthy mice.

While bone marrow transplants carry significant risks, especially in children, the researchers say they may be able to combine gene therapy with another treatment to achieve the same results. This same approach potentially could be used to treat other forms of Batten disease.

Batten disease is an inherited genetic disorder that strikes fewer than five of every 100,000 U.S. children but is slightly more common in northern Europe. There are several forms of the disease, diagnosed at different ages, and all are related to the inability of cells to break down and recycle proteins.

The infantile form is caused by mutations in the PPT1 gene that codes for an enzyme needed to remove these proteins from cells. Without a working copy of the gene, the proteins build up in cells, causing seizures, brain atrophy and dementia. The disease progresses most rapidly when it is diagnosed in infants. By age 2, most live in an unresponsive, vegetative state.

In the new study, the researchers tested various therapies in four groups of newborn mice with infantile Batten disease. One received only gene therapy; another received only bone marrow transplants; a third was treated with gene therapy and bone marrow transplants; and a fourth group received no treatment. As a comparison, the study included healthy mice without the disorder.

Gene therapy to replace the PPT1 enzyme was delivered directly into the brain. Bone marrow transplants were given with the intent that donor cells would migrate to the brain and deliver additional enzyme to regions of the brain not reached by gene therapy.

But that’s not what happened, Sands says. Although gene therapy delivered relatively high levels of PPT1 enzyme, the bone marrow transplants did not supply any additional enzyme. Rather, he and his colleagues discovered that mice receiving both therapies experienced a dramatic reduction in brain inflammation.

“We suspect that the normal immune cells from the bone marrow transplant substantially reduce inflammation in the brain because we just don’t see much of it in mice that got both therapies,” Sands says. “This helps the PPT1 enzyme to do its job inside cells.”

The study’s results show no increase in life span for mice receiving bone marrow transplantation alone compared to untreated mice – animals in both groups lived a median of 8.9 months. Mice that got only gene therapy lived 13.5 months, while those that got the combination therapy lived for 18.5 months.

The researchers noted similar effects of the therapies when they evaluated motor function. By 6 months, both untreated mice and those that received only a bone marrow transplant had experienced significant declines in motor skills. Mice that got gene therapy alone experienced a decline in motor function beginning at 10 months, and in those that got combination therapy, motor skills did not begin to decline until 13 months and did so more gradually than in the other mice.

Mice that got the combination therapy also had higher levels of active PPT1 enzyme in the brain, a thicker cerebral cortex and fewer accumulated proteins in brain cells, all indicators that the treatment is working.

Sands is now repeating the experiment and investigating other ways to reduce inflammation in the brain that would not involve the risks of a bone marrow transplant. One possibility, he says, involves anti-inflammatory drugs that have effects in the brain.

“We may be able to achieve the same results with a less invasive anti-inflammatory treatment,” Sands says. “We’re very excited now to move forward.”

The research is supported by the National Institutes of Health (NIH), Ruth L. Kirschstein NRSA Fellowship, The Wellcome Trust, Batten Disease Family Association, the Batten Disease Support and Research Association and the Bletsoe Family.

Macauley SL, Roberts MS, Wong AM, McSloy F, Reddy AS, Cooper JD and Sands MS. Synergisitc effects of CNS-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Annals of Neurology. Online ahead of print, Feb. 24, 2012.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>