Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination treatment in mice shows promise for fatal neurological disorder in kids

16.03.2012
Infants with Batten disease, a rare but fatal neurological disorder, appear healthy at birth. But within a few short years, the illness takes a heavy toll, leaving children blind, speechless and paralyzed. Most die by age 5.

There are no effective treatments for the disease, which can also strike older children. And several therapeutic approaches, evaluated in mouse models and in young children, have produced disappointing results.

But now, working in mice with the infantile form of Batten disease, scientists at Washington University School of Medicine in St. Louis and Kings College London have discovered dramatic improvements in life span and motor function by treating the animals with gene therapy and bone marrow transplants.

The results are surprising, the researchers say, because the combination therapy is far more effective than either treatment alone. Gene therapy was moderately effective in the mice, and bone marrow transplants provided no benefit, but together the two treatments created a striking synergy.

The research is online in the Annals of Neurology.

“Until now, this disease has been refractory to every therapy that has been thrown at it,” says senior author Mark Sands, PhD, professor of medicine and of genetics at the School of Medicine. “The results are the most hopeful to date, and they open up a new avenue of research to find effective therapies to fight this devastating disease.”

The combination therapy did not cure the disease, the scientists caution, but mice that received both treatments experienced significant, lasting benefits.

Mice that got gene therapy and a bone marrow transplant lived nearly 18.5 months, more than double the lifespan of untreated mice with the disease. (Healthy laboratory mice live about 24 months.) And for a significant portion of their lives, motor skills in mice that got both therapies were indistinguishable from those in normal, healthy mice.

While bone marrow transplants carry significant risks, especially in children, the researchers say they may be able to combine gene therapy with another treatment to achieve the same results. This same approach potentially could be used to treat other forms of Batten disease.

Batten disease is an inherited genetic disorder that strikes fewer than five of every 100,000 U.S. children but is slightly more common in northern Europe. There are several forms of the disease, diagnosed at different ages, and all are related to the inability of cells to break down and recycle proteins.

The infantile form is caused by mutations in the PPT1 gene that codes for an enzyme needed to remove these proteins from cells. Without a working copy of the gene, the proteins build up in cells, causing seizures, brain atrophy and dementia. The disease progresses most rapidly when it is diagnosed in infants. By age 2, most live in an unresponsive, vegetative state.

In the new study, the researchers tested various therapies in four groups of newborn mice with infantile Batten disease. One received only gene therapy; another received only bone marrow transplants; a third was treated with gene therapy and bone marrow transplants; and a fourth group received no treatment. As a comparison, the study included healthy mice without the disorder.

Gene therapy to replace the PPT1 enzyme was delivered directly into the brain. Bone marrow transplants were given with the intent that donor cells would migrate to the brain and deliver additional enzyme to regions of the brain not reached by gene therapy.

But that’s not what happened, Sands says. Although gene therapy delivered relatively high levels of PPT1 enzyme, the bone marrow transplants did not supply any additional enzyme. Rather, he and his colleagues discovered that mice receiving both therapies experienced a dramatic reduction in brain inflammation.

“We suspect that the normal immune cells from the bone marrow transplant substantially reduce inflammation in the brain because we just don’t see much of it in mice that got both therapies,” Sands says. “This helps the PPT1 enzyme to do its job inside cells.”

The study’s results show no increase in life span for mice receiving bone marrow transplantation alone compared to untreated mice – animals in both groups lived a median of 8.9 months. Mice that got only gene therapy lived 13.5 months, while those that got the combination therapy lived for 18.5 months.

The researchers noted similar effects of the therapies when they evaluated motor function. By 6 months, both untreated mice and those that received only a bone marrow transplant had experienced significant declines in motor skills. Mice that got gene therapy alone experienced a decline in motor function beginning at 10 months, and in those that got combination therapy, motor skills did not begin to decline until 13 months and did so more gradually than in the other mice.

Mice that got the combination therapy also had higher levels of active PPT1 enzyme in the brain, a thicker cerebral cortex and fewer accumulated proteins in brain cells, all indicators that the treatment is working.

Sands is now repeating the experiment and investigating other ways to reduce inflammation in the brain that would not involve the risks of a bone marrow transplant. One possibility, he says, involves anti-inflammatory drugs that have effects in the brain.

“We may be able to achieve the same results with a less invasive anti-inflammatory treatment,” Sands says. “We’re very excited now to move forward.”

The research is supported by the National Institutes of Health (NIH), Ruth L. Kirschstein NRSA Fellowship, The Wellcome Trust, Batten Disease Family Association, the Batten Disease Support and Research Association and the Bletsoe Family.

Macauley SL, Roberts MS, Wong AM, McSloy F, Reddy AS, Cooper JD and Sands MS. Synergisitc effects of CNS-directed gene therapy and bone marrow transplantation in the murine model of infantile neuronal ceroid lipofuscinosis. Annals of Neurology. Online ahead of print, Feb. 24, 2012.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>