Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination treatment may improve survival of breast cancer patients with brain metastases

02.11.2012
Adding angiogenesis inhibitor to anti-HER2 treatment significantly extends survival in mouse model

Adding an angiogenesis inhibitor to treatment with a HER2-inhibiting drug could improve outcomes for patients with HER2-positive breast cancer who develop brain metastases. In their report published online in PNAS Plus, Massachusetts General Hospital (MGH) investigators report the first preclinical study combining antiangiogenic and anti-HER2 drugs in an animal model of brain metastatic breast cancer.

"We have shown dramatic improvement in survival by slowing the growth of brain metastatic, HER2-amplified breast cancer," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH, Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School and senior author of the study. "This is particularly important because patients with this type of breast cancer have an increased risk of brain metastases, which have not responded to current therapies."

A quarter of breast cancers are driven by overexpression of the growth factor HER2, making them particularly aggressive. Treatment with drugs that block the pathway controlled by HER2 – trastuzumab (Herceptin) and lapatinib (Tykerb) – suppresses the growth of these tumors and extends patient survival. But these patients are at increased risk of developing brain metastases, which have resisted anti-HER2 treatment. Angiogenesis is also known to have an important role in breast cancer, and although previous studies combining chemotherapy with the antiangiogenesis drug bevacizumab (Avastin) delayed disease progression, they have not extended overall survival.

In addition to directly blocking the HER2-controlled growth pathway, anti-HER2 drugs also contribute to suppression of tumor-associated blood vessels. Previous studies in Jain's lab suggested that the proangiogenic factor VEGF may overcome the antiangiogenic effects of anti-HER2 drugs. This observation led the researchers to investigate whether blocking the VEGF pathway would improve the results of anti-HER2 treatment. Their study used a new mouse model in which the proliferation of HER2-amplified breast cancer cells implanted into brain tissue could be monitored over time. The researchers first confirmed that, as in human patients, treatment with a single anti-HER2 drug suppressed tumor growth in breast tissue but not within the brain.

While treatment with DC101, an antibody that blocks the VEGF pathway in mice, improved survival compared with either anti-HER2 drug, combining DC101 with one anti-HER2 drugs produced even greater survival improvement, including the death of tumor cells through significant reduction in tumor-associated angiogenesis. A triple combination of DC101 with both anti-HER2 drugs had the most dramatic effects. Animals receiving a single anti-HER2 drug along with DC101 lived more than three times as long as control animals, while those receiving all three drugs lived five times as long.

Jeffrey Engelman, MD, PhD, of the MGH Cancer Center, co-corresponding author of the PNAS Plus report, notes that a clinical trial now underway combining chemotherapy with bevacizumab in breast cancer addsanti-HER2 treatment for those participants whose tumors are HER2-amplified. The results of the current MGH study suggest that investigating a triple combination may be particularly beneficial. "With targeted therapies like anti-HER2 drugs suppressing the growth of tumors outside the central nervous system, brain metastasis is becoming a more common cause of treatment failure."

Co-corresponding author Dai Fukumura, MD, PhD, of the Steele Lab adds, "A clinical trial of this sort of triple combination will be an important next step. And in the meantime, we will continue to investigate the mechanisms of resistance to the effects of both double and triple combinations." Fukumura is an associate professor of Radiation Oncology and Engelman an associate professor of Medicine at Harvard Medical School.

Co-lead authors of the PNAS Plus article are David Kodack, PhD, Euiheon Chung and Hiroshi Yamashita of the Steele Lab. Additional co-author are Joao Incio, MD, Annique Duyverman, Yuhui Huang, PhD, Eleanor Ager, PhD, Walid Kamoun, Shom Goel, MBBS, Matija Snuderl, MD, Alisha Lussiez, Lotte Hiddingh and Sidra Mahmood, Steele Lab; Youngchul Song and April Eichler, MD, MGH Cancer Center; Christian Farrar, PhD, MGH Martinos Center for Biomedical Imaging, and Bakhos Tannous, PhD, MGH Neurology. Support for the study includes grants from the National Cancer Institute and a Breast Cancer Research Innovator Award from the Department of Defense

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>