Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination treatment may improve survival of breast cancer patients with brain metastases

02.11.2012
Adding angiogenesis inhibitor to anti-HER2 treatment significantly extends survival in mouse model

Adding an angiogenesis inhibitor to treatment with a HER2-inhibiting drug could improve outcomes for patients with HER2-positive breast cancer who develop brain metastases. In their report published online in PNAS Plus, Massachusetts General Hospital (MGH) investigators report the first preclinical study combining antiangiogenic and anti-HER2 drugs in an animal model of brain metastatic breast cancer.

"We have shown dramatic improvement in survival by slowing the growth of brain metastatic, HER2-amplified breast cancer," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH, Cook Professor of Radiation Oncology (Tumor Biology) at Harvard Medical School and senior author of the study. "This is particularly important because patients with this type of breast cancer have an increased risk of brain metastases, which have not responded to current therapies."

A quarter of breast cancers are driven by overexpression of the growth factor HER2, making them particularly aggressive. Treatment with drugs that block the pathway controlled by HER2 – trastuzumab (Herceptin) and lapatinib (Tykerb) – suppresses the growth of these tumors and extends patient survival. But these patients are at increased risk of developing brain metastases, which have resisted anti-HER2 treatment. Angiogenesis is also known to have an important role in breast cancer, and although previous studies combining chemotherapy with the antiangiogenesis drug bevacizumab (Avastin) delayed disease progression, they have not extended overall survival.

In addition to directly blocking the HER2-controlled growth pathway, anti-HER2 drugs also contribute to suppression of tumor-associated blood vessels. Previous studies in Jain's lab suggested that the proangiogenic factor VEGF may overcome the antiangiogenic effects of anti-HER2 drugs. This observation led the researchers to investigate whether blocking the VEGF pathway would improve the results of anti-HER2 treatment. Their study used a new mouse model in which the proliferation of HER2-amplified breast cancer cells implanted into brain tissue could be monitored over time. The researchers first confirmed that, as in human patients, treatment with a single anti-HER2 drug suppressed tumor growth in breast tissue but not within the brain.

While treatment with DC101, an antibody that blocks the VEGF pathway in mice, improved survival compared with either anti-HER2 drug, combining DC101 with one anti-HER2 drugs produced even greater survival improvement, including the death of tumor cells through significant reduction in tumor-associated angiogenesis. A triple combination of DC101 with both anti-HER2 drugs had the most dramatic effects. Animals receiving a single anti-HER2 drug along with DC101 lived more than three times as long as control animals, while those receiving all three drugs lived five times as long.

Jeffrey Engelman, MD, PhD, of the MGH Cancer Center, co-corresponding author of the PNAS Plus report, notes that a clinical trial now underway combining chemotherapy with bevacizumab in breast cancer addsanti-HER2 treatment for those participants whose tumors are HER2-amplified. The results of the current MGH study suggest that investigating a triple combination may be particularly beneficial. "With targeted therapies like anti-HER2 drugs suppressing the growth of tumors outside the central nervous system, brain metastasis is becoming a more common cause of treatment failure."

Co-corresponding author Dai Fukumura, MD, PhD, of the Steele Lab adds, "A clinical trial of this sort of triple combination will be an important next step. And in the meantime, we will continue to investigate the mechanisms of resistance to the effects of both double and triple combinations." Fukumura is an associate professor of Radiation Oncology and Engelman an associate professor of Medicine at Harvard Medical School.

Co-lead authors of the PNAS Plus article are David Kodack, PhD, Euiheon Chung and Hiroshi Yamashita of the Steele Lab. Additional co-author are Joao Incio, MD, Annique Duyverman, Yuhui Huang, PhD, Eleanor Ager, PhD, Walid Kamoun, Shom Goel, MBBS, Matija Snuderl, MD, Alisha Lussiez, Lotte Hiddingh and Sidra Mahmood, Steele Lab; Youngchul Song and April Eichler, MD, MGH Cancer Center; Christian Farrar, PhD, MGH Martinos Center for Biomedical Imaging, and Bakhos Tannous, PhD, MGH Neurology. Support for the study includes grants from the National Cancer Institute and a Breast Cancer Research Innovator Award from the Department of Defense

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>