Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel combination therapy shuts down escape route, killing glioblastoma tumor cells

27.02.2013
Glioblastoma, the most common and lethal form of brain tumor in adults, is challenging to treat because the tumors rapidly become resistant to therapy.

As cancer researchers are learning more about the causes of tumor cell growth and drug resistance, they are discovering molecular pathways that might lead to new targeted therapies to potentially treat this deadly cancer.

Scientists at the Ludwig Institute for Cancer Research in San Diego worked collaboratively across the laboratories of Drs. Paul Mischel, Web Cavenee and Frank Furnari to investigate one such molecular pathway called the mammalian target of rapamycin or mTOR. This signaling pathway is hyperactivated in close to 90 percent of glioblastomas and plays a critical role in regulating tumor growth and survival. Therapies that inhibit mTOR signaling are under investigation as drug development targets, but results to date have been disappointing: mTOR inhibitors halt the growth but fail to kill the tumor cells.

A study published this week in the Proceedings of the National Academy of Sciences uncovers an unexpected but important molecular mechanism of mTOR inhibitor resistance and identifies a novel drug combination that reverses this resistance.

The story begins with a closer look at a gene-encoded protein called promyleocytic leukemia gene or PML. The study investigators explored the role of PML in causing resistance to mTOR inhibitor treatment. They found that when glioblastoma patients are treated with drugs that target the mTOR pathway, the levels of PML rise dramatically. Further, they showed that PML upregulation made the tumor cells resistant to mTOR inhibitors, and that if they suppressed the ability of the tumor cells to upregulate the PML protein, the tumor cells died in response to the mTOR inhibitor therapy.

"When we looked at cells in in vivo models and patients treated in the clinic, it became clear that the glioblastoma cells massively regulated PML enabling them to escape the effects of mTOR inhibitor therapy," reported senior author Paul Mischel, MD, Ludwig Institute member based at the University of California at San Diego.

"Our team hypothesized that if we could use a pharmacological approach to get rid of PML and combine it with an mTOR inhibitor, it could change the response from halting growth to cell death. The question was how?" added Mischel.

Previous research had shown that the use of low-dose arsenic could cause degradation of the PML protein in patients with leukemia. The team hypothesized that if arsenic could degrade PML, it may reverse resistance to mTOR inhibitors. The combination of mTOR and low-dose arsenic in mice indeed showed a synergistic effect, with massive tumor cell death along with very significant shrinkage of the tumor in mice with no ill side effects.

"Current therapy upregulates PML, turning off the mTOR signaling pathway. The tumor cells hide, waiting for the target signal to return," said Mischel. "When low-dose arsenic is added, not only does it stop the cell from returning, it shuts down the escape route killing the tumor cell."

These results present the first clinical evidence that mTOR inhibition promotes PML upregulation in mice and patients, and that it mediates drug resistance. The clinical relevance was confirmed when researchers looked at before- and after-treatment tissue samples from patients treated with mTOR inhibitors, confirming that PML goes up significantly in post treatment of mTOR inhibitors.

"These data suggest a new approach for potential treatment of glioblastoma," said Mischel. "We are moving forward to test that possibility in people."

Post-doctoral students Akio Iwanami and Beatrice Gini from the Mischel lab as well as Ciro Zanca from the Furnari/Cavenee lab, also contributed significantly to this paper.

This work was supported by the Japan Society for the Promotion of Science, the Uehara Memorial Foundation, three NIH grants: NS73831, CA 119347 and P01-CA95616, the Ziering Family Foundation in Memory of Sigi Ziering and the Ben and Catherine Ivy Foundation.

About The Ludwig Institute for Cancer Research

The Ludwig Institute for Cancer Research is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, Ludwig is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Ludwig Institute has expended more than $1.5 billion on cancer research.

For further information please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>