Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination of existing safety checks could greatly reduce radiotherapy errors

03.08.2011
A combination of several well-known safety procedures could greatly reduce patient-harming errors in the use of radiation to treat cancer, according to a new study led by Johns Hopkins researchers.

Radiation oncologists use more than a dozen quality assurance (QA) checks to prevent radiotherapy errors, but until now, the Hopkins researchers say, no one has systematically evaluated their effectiveness. Working with researchers at Washington University in St. Louis, the Hopkins team gathered data on about 4,000 "near miss" events that occurred during 2008-2010 at the two institutions.

They then narrowed the data set to 290 events in which errors occurred that – if they had not been caught in time – could have allowed serious harm to patients. For each commonly used QA check, they determined the percentage of these potential patient-harming incidents that could have been prevented.

The group's key finding was that a combination of approximately six common QA measures would have prevented more than 90 percent of the potential incidents.

"While clinicians in this field may be familiar with these quality assurance procedures, they may not have appreciated how effective they are in combination," says Eric Ford, Ph.D., D.A.B.R., assistant professor of Radiation Oncology and Molecular Radiation Sciences at Johns Hopkins, who will present the group's findings on August 3 at the joint American Association of Physicists in Medicine (AAPM) and Canadian Organization of Medical Physicists annual meeting, held July 31 to August 4, 2011 in Vancouver, Canada.

At a separate symposium at the meeting, also on August 3, Ford and his colleagues will make related recommendations for the standardization of radiotherapy accident investigation procedures.

Ionizing radiation such as gamma radiation or proton beam radiation has long been a staple in cancer treatment, because it can efficiently create cell-killing DNA breaks within tumors. The goal is to use it in ways that maximize the dose delivered to a tumor, while keeping healthy tissue around the tumor as protected as possible by sharply focusing the radiation treatment area.

Unfortunately, the multistep complexity of radiation therapy, and the numerous precision measurements its use entails, can sometimes lead to mistakes, with patients getting too little radiation where it's needed, or too much where it isn't.

One QA check, a piece of hardware called an Electronic Portal Imaging Device (EPID), is built in to many radiotherapy-delivery machines, and can provide a real-time X-raylike image of the radiation coming through a patient. But Ford says less than one percent of radiotherapy clinics use EPID because the software and training needed to operate are mostly absent.

However, Ford says, their research showed that another key to safety turned out to be a humble checklist of relatively low-tech measures, "assuming it's used consistently correctly, which it often isn't," adds Ford. The checklist includes reviews of patient charts before treatment by both physicians and radiation-physicists, who calculate the right dose of radiation.

Use of film-based radiation-dose measurements as an alternative to EPID and a mandatory "timeout" by the radiation therapist before radiation is turned on to double-check that the written treatment plan and doses match what's on the radiation delivery machines were also on the list of the most effective QA procedures.

A common QA measure known as pretreatment IMRT (intensity modulated radiation therapy), in which clinical staff do a "test run" of the radiotherapy device at its programmed strength with no patient present, ranked very low on the list – because it would have prevented almost none of the potential incidents studied. "This is important to know, because pre-treatment IMRT often consumes a lot of staff time," says Ford.

Ford and his Johns Hopkins colleague Stephanie Terezakis, M.D., a pediatric radiation oncologist and a contributor to the QA evaluation study, also are members of the AAPM Working Group on the Prevention of Errors. At the Vancouver meeting, in a symposium on August 3, the group will make recommendations for a national radiotherapy incident reporting system. The group is developing a way to have treatment errors and near-misses reported and sent to a central group for evaluation and dissemination to clinics, says Ford. "It could work in ways similar to how air and train accidents are reported to the National Transportation Safety Board," he noted.

Other experts who contributed to the QA-check effectiveness study are Kendra Harris, M.D., a radiation oncology resident at Johns Hopkins; Annette Souranis, a therapist in the radiation oncology department, and Sasa Mutic, Ph.D., associate professor of radiation oncology at Washington University School of Medicine in St. Louis, Missouri.

The study was funded with a pilot research grant from Elekta Inc.

Abstract Title/Number: WE-C-214-5-- A Quantification of the Effectiveness of Standard QA Measures at Preventing Errors in Radiation Therapy and the Promise of in Vivo EPID-Based Portal Dosimetry

Abstract Link: http://www.aapm.org/meetings/amos2/pdf/59-16302-92754-297.pdf

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>