Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating H7N9: Using Lessons Learned from APEIR’s Studies on H5N1

22.04.2013
Studies on this disease recently completed by researchers from the Asia Partnership on Emerging Infectious Diseases Research (APEIR) developed a series of messages for policy makers that are highly relevant to the current outbreak.
The recent human cases of H7N9 avian influenza demonstrate the importance of adopting the lessons learned from H5N1 avian influenza. Studies on this disease recently completed by researchers from the Asia Partnership on Emerging Infectious Diseases Research (APEIR) developed a series of messages for policy makers that are highly relevant to the current outbreak.

Economic studies and studies on small scale producers showed that these producers were hit very hard by avian influenza.
Professor Liu Wenjun of the Chinese Academy of Sciences Institute of Microbiology said: ”With H7N9 we are already seeing marked falls in demand for poultry and this can have a major effect on the livelihoods of the rural poor who depend on the sale of chickens for a significant part of their disposable income. While it was necessary to close infected markets to protect public health, the flow-on effects for producers and others associated with the poultry industry are massive and there will be a need to look for alternative means of support for these producers.”

The economic studies recommended that support from the government is needed to build slaughtering facilities and freezers to help adjust to market price fluctuation. “At present many farmers cannot sell their poultry and ways need to be found to support these farmers when market shocks occur.”

“In areas affected by H7N9 influenza, which already covers Jiangsu, Zhejiang and Anhui provinces and beyond, support for taking up alternative jobs should be considered for households rearing poultry so that households can make up for their losses from raising poultry and maintain their living standards. The studies on H5N1 found that despite shifts in government policies towards support for large scale industrial poultry production, small scale production still needs support as it is a major source of income for women and the rural poor.”

The team conducting studies on the effectiveness of control measures against H5N1 found that there were significant deficiencies in biosecurity practices in most of the farms studied, especially, but not only, small scale farms. The measures in place on these farms would not be sufficient to prevent an H7N9 influenza virus from gaining entry to farms and infecting poultry. This means that, for areas where this virus is not yet present, farm biosecurity measures need to be strengthened, as recommended also by FAO, but the measures proposed and adopted have to be affordable and in line with existing production systems.

The various studies also found that with H5N1 control, wide area culling in which all poultry in a large zone around known infected flocks are culled had very severe effects on livelihoods because of the level of disruption and hardship it caused producers and the rural poor. There was also no evidence to suggest that it was more effective than limited culling, coupled with surveillance to detect other infected flocks. Compensation provides partial coverage of the losses but does not cover the loss of business or the loans farmers have taken out if they are not allowed to recommence business for an extended period of time.

Studies on wild birds conducted as part of APEIR demonstrated the importance of undertaking surveillance in wild birds to characterise the influenza viruses carried by these birds. The genetic information obtained so far on the H7N9 virus suggests that the H and N components of this virus were probably derived from wild birds, and also possibly from poultry. It is also evident from the genetic studies that the surveillance systems in place have not detected close relatives of the original host of these viruses and need to be strengthened. The studies conducted by APEIR did find some additional influenza virus subtypes other than H5N1 viruses, and this information helps in understanding the transmission of other influenza viruses by wild birds. Although no H7N9 viruses were detected, the viruses found were fully characterised and gene sequences uploaded to gene databases, adding to the pool of data available for comparison by scientists trying to unravel the origin of novel viruses.

APEIR recommended that all gene sequences of influenza viruses should be shared as soon as they are available and this has been done by Chinese scientists for H7N9 viruses. APEIR researchers, including Professor Lei Fumin of the Institute of Zoology of the Chinese Academy of Sciences, are currently investigating the possible role of wild birds in transmission of H7N9 avian influenza. Professor Lei Fumin said, "We have already seen suggestions that this virus could be transmitted widely among migratory birds and poultry, and it is important to assess the likelihood of this through scientific studies on wild birds as they fly north through China to their summer breeding grounds."

Policy makers in China may again be faced with a decision on whether or not to use vaccination to contain this disease so as to reduce the likelihood of exposure of humans to the H7N9 virus. APEIR studies on policy development showed the importance of having sound evidence on the merits and pitfalls of vaccination so that these can be weighed up scientifically without outside interference. Although there is no evidence so far that this virus will result in a human pandemic, this outbreak provides a reminder of the importance for all countries to ensure they have an appropriate stockpile of antiviral medication.

This study on avian influenza policies also found that agriculture sectoral policy should be coherent with public health sectoral policy and should aim to reduce the risk of emergence of human pandemic agents.

Dr. Pongpisut Jongudomsuk, Director of the Health Systems Research Institute, Thailand and Chair of the APEIR Steering Committee, said: “APEIR is a unique Asian trust-based EIDs research network composed of over 30 partner institutions from six countries (Cambodia, China, Indonesia, Lao PDR, Thailand and Vietnam). We have established partnerships and networks on the global, regional and country levels.”

“Much has been learned from studies conducted by APEIR researchers and we have an opportunity now to adopt the lessons so as to minimise effects on livelihoods and to prevent the disease caused by H7N9 avian influenza. APEIR is poised to play an important role in investigating and combating H7N9.”

For more information about APEIR and the five avian influenza projects please contact the APEIR Coordinating Office at phuonghuynh7@hotmail.com and pornpit@health.moph.go.th or visit the APEIR website at www.apeiresearch.net.

Isabelle Bourgeault-Tassé | Research asia research news
Further information:
http://www.apeiresearch.net/document_file/news_20130418040221-1.pdf
http://www.researchsea.com

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>