Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia engineers develop new method to diagnose heart arrhythmias

10.05.2011
First non-invasive technique to directly map electrical activation of the heart

Abnormalities in cardiac conduction, the rate at which the heart conducts electrical impulses to contract and relax, are a major cause of death and disability around the world. Researchers at Columbia Engineering School have been developing a new method, Electromechanical Wave Imaging (EWI), that is the first non-invasive technique to map the electrical activation of the heart.

Based on ultrasound imaging, EWI will enable doctors to treat arrhythmias more efficiently and more precisely. The study was published online in the May 9th Proceedings of the National Academy of Sciences.

Up until now, other research groups have mostly focused on measuring the electrical activation directly but invasively, through electrode contact, or non-invasively but indirectly, through complex mathematical modeling based on remote measurements. "This is an important breakthrough," said Elisa Konofagou, who led the research and is an associate professor of Biomedical Engineering and Radiology at Columbia University's Fu Foundation School of Engineering and Applied Science. "The approach we have chosen — to look at the minute deformations following the electrical activation of the heart — is both direct and noninvasive. Electromechanical Wave Imaging is also eminently translational as it can be incorporated into most ultrasound scanners already available in hospitals and clinics, and can be modified at little or no cost to use our technology."

Using their EWI method, the Columbia Engineering team imaged the heart with ultrasound five times faster than standard echocardiography and mapped the local deformations of the heart with their images. The researchers then looked at small regions of the heart (just a few millimeters squared) and measured how much these regions were stretched or compressed every 2/1000s of a second. This enabled them to precisely identify at what time each region of the heart began to contract, a.k.a the electromechanical activation, in all four chambers of the heart. They compared their maps with the electrical activation sequence and found they were closely correlated, both at the natural rhythm of the heart and when the heart was artificially paced.

Arrhythmias occur when the normal electrical activation sequence in the heart is disrupted and their prevalence is expected to rise, as people live longer. In some cases, effective treatments exist. For example, a pacemaker can be surgically placed or a catheter can be brought into the cardiac chambers and used to burn diseased regions of the heart or pacing leads can be implanted in the heart to bypass the diseased conduction system and replace it by artificial electrical activation. But doctors can't always tell where to ablate with a catheter or who will benefit from artificial electrical activation. EWI could help determine in advance which patients can benefit from these treatments or identify with more precision which regions of the heart should be ablated. It could also be used to adapt treatment parameters as the patient's condition evolves.

"Since ultrasound is so safe, portable, and low cost," added Dr. Konofagou, "we can imagine a future where most physicians can carry a portable ultrasound scanner the size of an iPhone and easily get a map of the activation of the heart during a routine visit." Her team has already begun to image patients with arrhythmias and compare their measurements with the gold standard of catheterization and non-contact electrode measurements. If this study is conclusive, they will then move to a larger clinical study.

The Columbia Engineering study has been supported by the National Institutes of Health.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges.

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>