Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia engineers develop new method to diagnose heart arrhythmias

10.05.2011
First non-invasive technique to directly map electrical activation of the heart

Abnormalities in cardiac conduction, the rate at which the heart conducts electrical impulses to contract and relax, are a major cause of death and disability around the world. Researchers at Columbia Engineering School have been developing a new method, Electromechanical Wave Imaging (EWI), that is the first non-invasive technique to map the electrical activation of the heart.

Based on ultrasound imaging, EWI will enable doctors to treat arrhythmias more efficiently and more precisely. The study was published online in the May 9th Proceedings of the National Academy of Sciences.

Up until now, other research groups have mostly focused on measuring the electrical activation directly but invasively, through electrode contact, or non-invasively but indirectly, through complex mathematical modeling based on remote measurements. "This is an important breakthrough," said Elisa Konofagou, who led the research and is an associate professor of Biomedical Engineering and Radiology at Columbia University's Fu Foundation School of Engineering and Applied Science. "The approach we have chosen — to look at the minute deformations following the electrical activation of the heart — is both direct and noninvasive. Electromechanical Wave Imaging is also eminently translational as it can be incorporated into most ultrasound scanners already available in hospitals and clinics, and can be modified at little or no cost to use our technology."

Using their EWI method, the Columbia Engineering team imaged the heart with ultrasound five times faster than standard echocardiography and mapped the local deformations of the heart with their images. The researchers then looked at small regions of the heart (just a few millimeters squared) and measured how much these regions were stretched or compressed every 2/1000s of a second. This enabled them to precisely identify at what time each region of the heart began to contract, a.k.a the electromechanical activation, in all four chambers of the heart. They compared their maps with the electrical activation sequence and found they were closely correlated, both at the natural rhythm of the heart and when the heart was artificially paced.

Arrhythmias occur when the normal electrical activation sequence in the heart is disrupted and their prevalence is expected to rise, as people live longer. In some cases, effective treatments exist. For example, a pacemaker can be surgically placed or a catheter can be brought into the cardiac chambers and used to burn diseased regions of the heart or pacing leads can be implanted in the heart to bypass the diseased conduction system and replace it by artificial electrical activation. But doctors can't always tell where to ablate with a catheter or who will benefit from artificial electrical activation. EWI could help determine in advance which patients can benefit from these treatments or identify with more precision which regions of the heart should be ablated. It could also be used to adapt treatment parameters as the patient's condition evolves.

"Since ultrasound is so safe, portable, and low cost," added Dr. Konofagou, "we can imagine a future where most physicians can carry a portable ultrasound scanner the size of an iPhone and easily get a map of the activation of the heart during a routine visit." Her team has already begun to image patients with arrhythmias and compare their measurements with the gold standard of catheterization and non-contact electrode measurements. If this study is conclusive, they will then move to a larger clinical study.

The Columbia Engineering study has been supported by the National Institutes of Health.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges.

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>