Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colon cancer screening guidelines may miss 10 percent of colon cancers

23.10.2013
For people with a family history of adenomas (colon polyps that lead to colon cancer), up to 10 percent of colorectal cancers could be missed when current national screening guidelines are followed. Colorectal cancer is the third most common cancer in the United States and the second deadliest.

In the largest population-based study to date, researchers from Huntsman Cancer Institute (HCI) at the University of Utah made this finding based on nearly 127,000 individuals who underwent colonoscopy in Utah between 1995 and 2009. The results appear online in "Early View" of the journal Cancer.

Family history of colon cancer is widely accepted as a factor that increases risk for the disease. This study quantified the increased risk to first-degree relatives (parents, siblings, children) of patients with adenomas or advanced adenomas at 35 to 70 percent higher than in relatives of patients without these conditions. The study also detected smaller percentages of elevated risk in more distant second- (aunts and uncles, grandparents) and third-degree relatives (cousins, nieces and nephews, great-grandparents).

"We expected to see increased risk in first-degree relatives, but we weren't sure the risk would also be higher for more distant relatives in multiple generations," said N. Jewel Samadder, MD, MSc, principal investigator of the study and an HCI investigator. "The biggest surprise was the percentage of missed cancers under the current guidelines. We figured there would be a few percent, but 10 percent is a large number," he added.

For the general population, current national colon cancer screening guidelines recommend colonoscopy every 10 years starting at age 50. For first-degree relatives of people diagnosed with colorectal cancer or advanced adenomas before they were 60 years old, increased screening is recommended—colonoscopies every five years starting at age 40. The screening recommendations for more distant relatives of people diagnosed before 60 and for all relatives of people diagnosed at or after age 60 are the same as for the general public.

"Our results support the current screening guidelines, but they also raise the issue of whether some level of more aggressive screening should be considered, not only for first-degree relatives of patients with polyps diagnosed at or below age 60, but also for those first-degree relatives of patients diagnosed above age 60.," said Samadder. "To validate other components of the current screening guidelines, we need to continue with a more in-depth examination of the risk of colorectal cancer in relatives of patients diagnosed with colorectal cancer or advanced adenomas, looking at factors such as the size of the polyp, the degree of cell abnormality and location of the tumor in the bowel."

The study examined colonoscopy results from Utah residents between 50 and 80 years of age, linking them with cancer and pedigree information from the Utah Population Database (UPDB). "The records came from both Intermountain Healthcare and University of Utah Health Care, which represents 85 percent of all patient care in Utah and includes facilities from academic medical centers to small rural clinics," said Samadder. "No other study has combined genealogical and cancer data with records from two major health care organizations which have integrated electronic patient data."

Co-authors of the study include Thérèse Tuohy, PhD; Geraldine Mineau, PhD; Richard Pimentel, MS; and Randall Burt, MD, all from HCI; and Kerry G. Rowe, MS, from Intermountain Healthcare. The research was supported by NCI grants P01-CA073992 (RWB) and R01-CA040641 (RWB). Partial support for the Utah Population Database is provided by Huntsman Cancer Institute, Huntsman Cancer Foundation, and the HCI Cancer Center Support grant, P30CA042014 from the National Cancer Institute. The Utah Cancer Registry is funded by contract HHSN 261201000026C from the National Cancer Institute's SEER program, with additional support from the Utah State Department of Health and the University of Utah.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for world-class, state-of-the-art programs in multidisciplinary cancer research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit http://www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>