Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colon cancer screening guidelines may miss 10 percent of colon cancers

23.10.2013
For people with a family history of adenomas (colon polyps that lead to colon cancer), up to 10 percent of colorectal cancers could be missed when current national screening guidelines are followed. Colorectal cancer is the third most common cancer in the United States and the second deadliest.

In the largest population-based study to date, researchers from Huntsman Cancer Institute (HCI) at the University of Utah made this finding based on nearly 127,000 individuals who underwent colonoscopy in Utah between 1995 and 2009. The results appear online in "Early View" of the journal Cancer.

Family history of colon cancer is widely accepted as a factor that increases risk for the disease. This study quantified the increased risk to first-degree relatives (parents, siblings, children) of patients with adenomas or advanced adenomas at 35 to 70 percent higher than in relatives of patients without these conditions. The study also detected smaller percentages of elevated risk in more distant second- (aunts and uncles, grandparents) and third-degree relatives (cousins, nieces and nephews, great-grandparents).

"We expected to see increased risk in first-degree relatives, but we weren't sure the risk would also be higher for more distant relatives in multiple generations," said N. Jewel Samadder, MD, MSc, principal investigator of the study and an HCI investigator. "The biggest surprise was the percentage of missed cancers under the current guidelines. We figured there would be a few percent, but 10 percent is a large number," he added.

For the general population, current national colon cancer screening guidelines recommend colonoscopy every 10 years starting at age 50. For first-degree relatives of people diagnosed with colorectal cancer or advanced adenomas before they were 60 years old, increased screening is recommended—colonoscopies every five years starting at age 40. The screening recommendations for more distant relatives of people diagnosed before 60 and for all relatives of people diagnosed at or after age 60 are the same as for the general public.

"Our results support the current screening guidelines, but they also raise the issue of whether some level of more aggressive screening should be considered, not only for first-degree relatives of patients with polyps diagnosed at or below age 60, but also for those first-degree relatives of patients diagnosed above age 60.," said Samadder. "To validate other components of the current screening guidelines, we need to continue with a more in-depth examination of the risk of colorectal cancer in relatives of patients diagnosed with colorectal cancer or advanced adenomas, looking at factors such as the size of the polyp, the degree of cell abnormality and location of the tumor in the bowel."

The study examined colonoscopy results from Utah residents between 50 and 80 years of age, linking them with cancer and pedigree information from the Utah Population Database (UPDB). "The records came from both Intermountain Healthcare and University of Utah Health Care, which represents 85 percent of all patient care in Utah and includes facilities from academic medical centers to small rural clinics," said Samadder. "No other study has combined genealogical and cancer data with records from two major health care organizations which have integrated electronic patient data."

Co-authors of the study include Thérèse Tuohy, PhD; Geraldine Mineau, PhD; Richard Pimentel, MS; and Randall Burt, MD, all from HCI; and Kerry G. Rowe, MS, from Intermountain Healthcare. The research was supported by NCI grants P01-CA073992 (RWB) and R01-CA040641 (RWB). Partial support for the Utah Population Database is provided by Huntsman Cancer Institute, Huntsman Cancer Foundation, and the HCI Cancer Center Support grant, P30CA042014 from the National Cancer Institute. The Utah Cancer Registry is funded by contract HHSN 261201000026C from the National Cancer Institute's SEER program, with additional support from the Utah State Department of Health and the University of Utah.

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-designated cancer center, which means that it meets the highest national standards for world-class, state-of-the-art programs in multidisciplinary cancer research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit http://www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>