Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold-Blooded Research has Hearts Thumping

22.04.2013
The protective effect of inducing controlled hypothermia following sudden cardiac arrest will now be investigated in detail.

The goal of the scientific work is to judge whether this type of cryotherapy can be improved when using parallel simultaneous invasive resuscitation procedures. Establishing a powerful model to help predict improvements in patients' health is key for the project.


Green light for research on inducing controlled hypothermia following sudden cardiac arrest. Photo: Andreas Janata

Neuro-behavioural tests will also be developed to enable various treatment regimens to be compared. The project, supported by the Austrian Science Fund FWF, will establish the basis for best practices when saving lives using controlled hypothermia.

Things stay fresh longer when refrigerated. That goes for lettuce as well as humans – especially when the body is not provided with an adequate supply of oxygen. This occurs following sudden cardiac arrest, which has a survival rate of less than ten percent. Cooling to 33 degrees Celsius – known as mild hypothermia – is actually the only effective therapy for improving the survival rates of these patients. A team of researchers from the Medical University of Vienna will now investigate how to improve hypothermic treatment when using it in combination with invasive resuscitation procedures.

Resuscitation & Repairing

Hypothermia works by reduction of reperfusion injury – the damage that is inflicted by oxygenized blood flowing into oxygen-deprived tissue. As paradoxical as it may sound, the resuscitation that makes survival of the patient possible, likewise leads to damage of the heart muscle and brain. Dr. Andreas Janata from the Department of Emergency Medicine at the Medical University of Vienna and leader of the project on this topic: "Reperfusion injury occurs when blood flow is restored to the brain after a period of hypoxia, which is oxygen deprivation. Restoration of the blood flow actually triggers an inflammation reaction and oxidative stress that can damage the tissue. Hypothermia can reduce the effects of these mechanisms of damage." Current conventional protocols involve reducing the body temperature down to 33 degrees Celsius. According to the hypothesis, even lower temperatures would minimise damaging after-effects in the brain – but they would lead to intolerable side effects for the heart.

Dr. Janata and his team want to get a grip on precisely this treatment dilemma. For invasive resuscitation procedures using a heart-lung machine relieve the heart during resuscitation and thus allow the use of lower temperatures. However, the best temperature scheme is not yet known and the project will settle this.

Therapeutic Cocktail "on the Rocks"

Hypothermia influences a great many physiological processes, which is one of the challenges involved. These include programmed cell death (apoptosis), immune responses, and damage to nerve cells (excitotoxicity), as well as oxidative cellular stress. The processes affected are actually so complex that it would be difficult to identify any one single pharmaceutical therapy that could have just as comprehensive and positive an effect as hypothermia does. Dr. Janata comments: "Hypothermia is like a cocktail of various medications. That makes it very difficult to study its effect or determine the best practices for treatment." Due to this complexity, a significant part of the work begun recently by his team consists of setting up a suitable multi-tier model that permits analysis of various treatment regimens.

In fact, the team had already managed to develop models for ventricular fibrillations and invasive resuscitation some time ago. The project will now include developing neuro-behavioural tests for this model. These tests will be carried out following an induced circulatory arrest and permit the consequences of treatments with varying degrees of hypothermia during invasive resuscitative procedures to be compared. The results of this project, which is supported by the FWF, will then offer a basis for best-practices treatment in cases of sudden cardiac arrest – a medical problem that has exhibited frighteningly low survival rates, despite its frequent occurrence.

Scientific contact
Dr. Andreas Janata
Medical University of Vienna
Department of Emergency Medicine
Währinger Gürtel 18 - 20
1090 Vienna, Austria
M +43 / 650 / 314 7344
E andreas.janata@meduniwien.ac.at
Austrian Science Fund FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
Copy Editing & Distribution
PR&D – Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Judith Sandberger | PR&D
Further information:
http://www.fwf.ac.at

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>