Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold-Blooded Research has Hearts Thumping

22.04.2013
The protective effect of inducing controlled hypothermia following sudden cardiac arrest will now be investigated in detail.

The goal of the scientific work is to judge whether this type of cryotherapy can be improved when using parallel simultaneous invasive resuscitation procedures. Establishing a powerful model to help predict improvements in patients' health is key for the project.


Green light for research on inducing controlled hypothermia following sudden cardiac arrest. Photo: Andreas Janata

Neuro-behavioural tests will also be developed to enable various treatment regimens to be compared. The project, supported by the Austrian Science Fund FWF, will establish the basis for best practices when saving lives using controlled hypothermia.

Things stay fresh longer when refrigerated. That goes for lettuce as well as humans – especially when the body is not provided with an adequate supply of oxygen. This occurs following sudden cardiac arrest, which has a survival rate of less than ten percent. Cooling to 33 degrees Celsius – known as mild hypothermia – is actually the only effective therapy for improving the survival rates of these patients. A team of researchers from the Medical University of Vienna will now investigate how to improve hypothermic treatment when using it in combination with invasive resuscitation procedures.

Resuscitation & Repairing

Hypothermia works by reduction of reperfusion injury – the damage that is inflicted by oxygenized blood flowing into oxygen-deprived tissue. As paradoxical as it may sound, the resuscitation that makes survival of the patient possible, likewise leads to damage of the heart muscle and brain. Dr. Andreas Janata from the Department of Emergency Medicine at the Medical University of Vienna and leader of the project on this topic: "Reperfusion injury occurs when blood flow is restored to the brain after a period of hypoxia, which is oxygen deprivation. Restoration of the blood flow actually triggers an inflammation reaction and oxidative stress that can damage the tissue. Hypothermia can reduce the effects of these mechanisms of damage." Current conventional protocols involve reducing the body temperature down to 33 degrees Celsius. According to the hypothesis, even lower temperatures would minimise damaging after-effects in the brain – but they would lead to intolerable side effects for the heart.

Dr. Janata and his team want to get a grip on precisely this treatment dilemma. For invasive resuscitation procedures using a heart-lung machine relieve the heart during resuscitation and thus allow the use of lower temperatures. However, the best temperature scheme is not yet known and the project will settle this.

Therapeutic Cocktail "on the Rocks"

Hypothermia influences a great many physiological processes, which is one of the challenges involved. These include programmed cell death (apoptosis), immune responses, and damage to nerve cells (excitotoxicity), as well as oxidative cellular stress. The processes affected are actually so complex that it would be difficult to identify any one single pharmaceutical therapy that could have just as comprehensive and positive an effect as hypothermia does. Dr. Janata comments: "Hypothermia is like a cocktail of various medications. That makes it very difficult to study its effect or determine the best practices for treatment." Due to this complexity, a significant part of the work begun recently by his team consists of setting up a suitable multi-tier model that permits analysis of various treatment regimens.

In fact, the team had already managed to develop models for ventricular fibrillations and invasive resuscitation some time ago. The project will now include developing neuro-behavioural tests for this model. These tests will be carried out following an induced circulatory arrest and permit the consequences of treatments with varying degrees of hypothermia during invasive resuscitative procedures to be compared. The results of this project, which is supported by the FWF, will then offer a basis for best-practices treatment in cases of sudden cardiac arrest – a medical problem that has exhibited frighteningly low survival rates, despite its frequent occurrence.

Scientific contact
Dr. Andreas Janata
Medical University of Vienna
Department of Emergency Medicine
Währinger Gürtel 18 - 20
1090 Vienna, Austria
M +43 / 650 / 314 7344
E andreas.janata@meduniwien.ac.at
Austrian Science Fund FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
Copy Editing & Distribution
PR&D – Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Judith Sandberger | PR&D
Further information:
http://www.fwf.ac.at

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>